Những câu hỏi liên quan
PB
Xem chi tiết
CT
8 tháng 11 2018 lúc 8:42

+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.

+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 ,   ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .

⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 6 2019 lúc 3:17

Ta có:   2 x - 1 > 0 x - m < 2 ⇔ x > 1 2 x < 2 + m

Để hệ bất phương trình có nghiệm khi và chỉ khi 1 2 < 2 + m ⇔ m > - 3 2

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 12 2017 lúc 14:13

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 2 2017 lúc 2:39

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 10 2019 lúc 11:43

Ta có:  2x +  4 < 0 khi x < - 2.

* Xét mx + 1 >  0   (*)

   + Nếu m = 0 thì (*) trở thành: 0x + 1 >0 (luôn đúng).

  + Nếu m > 0 thì  * ⇔ m x > - 1 ⇔ x > - 1 m

Suy ra, tập nghiệm của hệ bất phương trình không thể  - ∞ ; - 2

  + Nếu m < 0 thì  * ⇔ m x > - 1 ⇔ x < - 1 m

Để hệ bất phương trình có tập nghiệm là  - ∞ ; - 2  khi và chỉ khi :

- 1 m > - 2 ⇔ - 1 + 2 m m > 0 ⇔ - 1 + 2 m < 0   ( vì m < 0)

⇔ 2 m < 1 ⇔ m < 1 2

Kết hợp điều kiện m < 0 ta được: m < 0

Từ các trường hợp trên suy ra:   m ≤ 0 .

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 11 2017 lúc 7:42

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2019 lúc 10:51

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 5 2018 lúc 2:06

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2019 lúc 8:59

Ta có  2 x - 1 ≥ 3 x - m ≤ 0 ⇔ x ≥ 2 x ≤ m . Hệ có nghiệm duy nhất khi và chỉ khi m = 2

Bình luận (0)