Những câu hỏi liên quan
PT
Xem chi tiết
PB
Xem chi tiết
H24
8 tháng 7 2016 lúc 15:06

(2005-1)x9+19=tự tính nhé

Bình luận (0)
PB
8 tháng 7 2016 lúc 15:02

ai lm nhanh cho 5 k

Bình luận (0)
IW
8 tháng 7 2016 lúc 15:05

NHận thấy: 28-19=9

                    37-28=9

Đây là dãy số tự nhiên cách đều nhau 9 đơn vị

Số hạng thứ 2005 của dãy là:

 (2005-1)x9+19=18055

Bình luận (0)
VC
Xem chi tiết
GD

a, Khoảng cách 2 số hạng liên tiếp: 4 - 2 = 6 - 4 = 8 - 6 = 10 - 8 = 12 - 10 = 2

Số hạng thứ 2014 là: (2014 - 1 ) x 2 + 2 = 2013 x 2 + 2 = 4028

b, Hai số hạng liên tiếp có hiệu là 1 đơn vị

Số bé là: (2015 - 1):2= 1007

Số lớn là: 1007 +1 =1008

Đ.số:......

Bình luận (0)
H24
7 tháng 1 2024 lúc 10:00

Khoảng cách giữa 2 số hạng liên tiếp cách nhau:

\(4-2=2\)(đơn vị)

Vậy số hạng thứ 2014 cần tìm là:

\(\left(2014-1\right)\times2+2=4028\)

Đáp số: 4028

\(-------------\)

2 số tự nhiên liên tiếp cần tìm có tổng bằng 2015 là: \(1007\left(và\right)1008\)

Bình luận (0)
TD
Xem chi tiết
NN
26 tháng 8 2017 lúc 15:47

1)55=4+5+6+7+8+9+10+11

Bình luận (0)
HT
26 tháng 8 2017 lúc 17:12

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

Bình luận (0)
TD
Xem chi tiết
B1
26 tháng 8 2017 lúc 20:23

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bình luận (0)
HN
Xem chi tiết
BL
Xem chi tiết
DM
6 tháng 10 2019 lúc 14:54

blah blah blah...

blah blah blah ...

blah blah blah ...

ko can k dau!

Bình luận (0)
PK
9 tháng 10 2019 lúc 0:40

Bài 2:

Gọi số hạng đầu là X, số hạng cuối là Y, số lượng số hạng là Z, tổng là A và khoảng cách là B. Áp dụng 2 công thức dưới đây, bạn sẽ giải được dạng bài toán này:

1. Tính tổng:      A = (X + Y) x Z : 2 (1)

2. Tính số lượng số hạng:    Z =  (Y - X) : B (2)

Điền dữ liệu đầu bài vào (1) và (2) ta có:

3400 = (X + Y) x 10 : 2  ==> X + Y = 680 (1)

10 = (Y - X) : 10 +1   ==> Y - X = 90 (2)

Từ (1) và (2) suy ra: X + Y + Y - X = 680 + 90 ==> Y = 385, X = 295.

Bình luận (0)
PK
9 tháng 10 2019 lúc 6:50

Tiếp bài 2 (cách khác): Tôi thấy công thức mới này do tôi nghiên cứu lập ra sẽ tính nhanh hơn nhiều.

- Số hạng đầu tiên = (A : 5 - B x 9) : 2

- Số hạng cuối cùng = (A : 5 + B x 9) : 2

với A là tổng số hạng, B là khoảng cách giữa các số hạng, 9 là đơn vị khoảng cách giữa số hạng đầu tiên và số hạng cuối cùng (10 - 1 = 9 đơn vị), 5 là số cặp 2 số hạng đầu cuối có tổng bằng nhau (10 số hạng).

Áp dụng công thức trên suy ra:

- Số hạng đầu tiên = (3400 : 5 - 10 x 9) : 2 = 295.

- Số hạng cuối cùng = (3400 : 5 + 10 x 9) : 2 = 385.

Bình luận (0)
VL
Xem chi tiết
NH
24 tháng 6 2023 lúc 20:54

Cho dãy số: 11; 14; 17;...;68

a, Dãy số trên là dãy số cách đều với khoảng cách là: 14 - 11 = 3

    Dãy số trên có số số hạng là: (68 - 11):3 + 1   = 20 (số)

b, Số thứ 100 của dãy số trên là:

    3 \(\times\)(100 - 1) + 11 = 308

  Đáp số: a, 20

                b, 308

Bình luận (0)
NK
24 tháng 6 2023 lúc 20:54

a) Ta thấy mỗi số của dãy số trên đều cách đều nhau 3 đơn vị

=> Số số hạng của dãy số trên là:

  \(\left(68-11\right)\div3+1=20\) ( số hạng )

b) Ta thấy :

Số hạng thứ 2: \(14=11+3=11+\left(2-1\right)\times3\) 

Số hạng thứ 3: \(17=11+6=11+\left(3-1\right)\times3\) 

=> Số hạng thứ 100 là \(11+\left(100-1\right)\times3=308\)

Bình luận (0)
NM
24 tháng 6 2023 lúc 20:56

 

a, Giải

Khoảng cách giữa 2 số liền nhau là 3 đơn vị.

Dãy số trên có số số hạng là:

(68-11):3+1 = 20 (số hạng)

                                 Đáp số : a,20 số hạng

b,              Giải

Có 100 số hạng thì có số khoảng cách là: 99 khoảng cách

Tổng khoảng cách là: 3x99= 297 (khoảng cách)

Số thứ 100 của dãy là: 1+297= 298

                                             Đ/S:b, Số 298

Bình luận (0)
NK
Xem chi tiết
DN
17 tháng 1 2017 lúc 19:41

Sẽ không có mặt vì cá số trên dãy đều chia 9 dư 1,còn 19971998 chia 9 dư 8,19981999 chia 9 dư 1

Mình thề mình làm đúng, tk mình nha, chúc bạn học giỏi! Câu xin bạn, tk mình đi

Bình luận (0)