Những câu hỏi liên quan
VN
Xem chi tiết
VP
Xem chi tiết
TH
17 tháng 4 2022 lúc 21:01

\(A=\dfrac{3}{x^2+4x+10}=\dfrac{3}{x^2+4x+4+6}=\dfrac{3}{\left(x+2\right)^2+6}\le\dfrac{3}{6}=\dfrac{1}{2}\)

\(A_{max}=\dfrac{1}{2}\Leftrightarrow x=-2\)

 

Bình luận (0)
H24
17 tháng 4 2022 lúc 21:02

Dễ thấy : \(x^2+4x+10=\left(x+2\right)^2+6\ge6\forall x\)

\(\Rightarrow\dfrac{3}{x^2+4x+10}\le\dfrac{3}{6}=\dfrac{1}{2}\) 

" = " \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy ... 

Bình luận (0)
H24
Xem chi tiết
TG
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

Bình luận (0)
H24
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bình luận (0)
NH
Xem chi tiết
HM
5 tháng 3 2018 lúc 19:31

\(D=\frac{4x+2}{x+1}=\frac{4x+4-2}{x+1}=\frac{4\left(x+1\right)-2}{x+1}=4+\frac{-2}{x+1}\)

Để D có GTLN \(\Leftrightarrow\frac{-2}{x+1}\)có GTNN

                       \(\Leftrightarrow x+1\)có GTLN, x+1<0 và x\(x\inℤ\)

                         \(\Leftrightarrow x+1=-1\)

                                 \(x=-2\)

                  vậy, D có GTLN là 6 khi x=-2

Để D có GTNN \(\Leftrightarrow\frac{-2}{x+1}\)có GTLN

                       \(\Leftrightarrow x+1\)có GTNN, x+1>0 và x\(x\inℤ\)

                         \(\Leftrightarrow x+1=1\)

                                 \(x=0\)

                  vậy, D có GTNN là 2 khi x=0

Bình luận (0)
LP
Xem chi tiết
PH
1 tháng 12 2018 lúc 11:58

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

Bình luận (0)
LP
2 tháng 12 2018 lúc 11:32

Thanks bạn ;)

Bình luận (0)
LH
Xem chi tiết
ND
3 tháng 7 2020 lúc 20:52

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
3 tháng 7 2020 lúc 21:18

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(

Bình luận (0)
 Khách vãng lai đã xóa
ND
3 tháng 7 2020 lúc 21:20

Dạ cái của bạn zZz Cool Kid_new zZz là làm ra nháp ạ, mk cx làm zậy, không cần điền zô bài làm, mí lại bạn cần chỉ ra được dấu bằng xảy ra chứ!

Bình luận (0)
 Khách vãng lai đã xóa
XP
Xem chi tiết
NT
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

Bình luận (0)
EC
Xem chi tiết
NT
17 tháng 2 2021 lúc 20:59

Ta có : 

\(Q=\frac{3-4x}{x^2+1}=\frac{4x^2+4-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)

Dấu ''='' xảy ra <=> 2x + 1 = 0 <=> x = -1/2 

Vậy GTLN Q là 4 <=> x = -1/2 

Bình luận (0)
 Khách vãng lai đã xóa
KG
17 tháng 2 2021 lúc 21:04

Ta có: \(Q=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Ta thấy: \(\frac{\left(2x+1\right)^2}{x^2+1}\ge0\Rightarrow4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\)với \(\forall x\)

Dấu "=" xảy ra khi 2x+1=0<=>x=-1/2

Vậy MaxQ = 4 khi x=-1/2'

Đánh điện thoại lâu quá:vvvv

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
HN
4 tháng 9 2016 lúc 16:36

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

Bình luận (0)
DT
Xem chi tiết
ND
4 tháng 7 2020 lúc 9:45

Bài làm:

#Tìm Max của biểu thức:

\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow A\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)

#Tìm Max và Min của B:

Tìm Min

\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)

\(\Rightarrow B\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)

Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)

Tìm Max

\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow B\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)

Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?

Bình luận (0)
 Khách vãng lai đã xóa