Biết rằng hệ phương trình x + y − x y = 3 x + 1 + y + 1 = 4 có nghiệm duy nhất (x; y). Tính x + 2y
A. 9
B. 6
C. 12
D. 3
Biết rằng hệ phương trình: x 2 + y 2 + 2 x y = 8 2 x + y = 4 có nghiệm duy nhất (x; y). Tính x y
A. 3
B. 1 2
C. 2
D. 1
Điều kiện: xy > 0
2 x 2 + y 2 + 2 x y = 16 x + y + 2 x y = 16 ⇔ 2 x 2 + y 2 = x + y ⇔ ( x – y ) 2 = 0 ⇔ x = y
Thay x = y vào x + y + x y = 16 ta được
2x + 2|x| = 16 ⇔ x + |x| = 8 ⇒ x = 4 ⇒ y = x = 4
Vậy hệ có một cặp nghiệm duy nhất (x; y) = (4; 4)
Khi đó x y = 4 4 = 1
Đáp án:D
Cho hệ phương trình 2 x + y = 3 1 x - 2 y = 4 . Biết nghiệm của hệ phương trình là (x; y), tính x/y
A. 2
B. -2
C. -1/2
D. 1/2
Cho hệ phương trình 2 x + y = 3 1 x - 2 y = 4 . Biết nghiệm của hệ phương trình là (x; y), tính x/y
A. 2
B. -2
C. -1/2
D. 1/2
Cho hệ phương trình: a(x2 + y2)+ x + y = b và y - x= b biết rằng hệ có nghiệm với mọi b . C hứng minh rằng a=0
Cho hệ phương trình
\(\hept{\begin{cases}\left|x\right|+x+\left|y\right|+y=2000\\\left|x\right|-x+\left|y\right|-y=k\end{cases}}\)
Trong đó K là 1 số cho trước biết rằng hệ phương trình đã cho có đúng hai nghiệm phân biệt (x;y)=(a;b) và (x;y)=(c;d)
Tổng a+b+c+d = ?
Khoa Bùi Phạm (Em làm thử)
\(\hept{\begin{cases}\left|x\right|+x+\left|y\right|+y=2000\left(1\right)\\\left|x\right|-x+\left|y\right|-y=k\left(2\right)\end{cases}}\)
Lấy (1)-(2) \(\Rightarrow2x+2y=2000-k\)
\(\Rightarrow2\left(x+y\right)=2000-k\)
Vì hệ phương trình có đúng hai no phân biệt (x;y)=(a;b) và (x;y)=(c;d)
Nên \(2\left(x+y\right)=a+b+c+d\)
Vậy \(a+b+c+d=2000-k\)
P/s: k chắc lắm -.- . Nếu có lỗi sai mong thầy/cô và các bn chỉ ra giúp em. Cảm ơn!
cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\\left(m+1\right)x+my=7\end{matrix}\right.\)
a) chứng minh rằng: với mọi m thì hệ phương trình luôn có nghiệm x,y thỏa mãn x.y =< 1
b) tìm m là số nguyên để hệ phương trình có nghiệm thỏa mãn x.y>0
Lời giải:
a.
Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$
$\Leftrightarrow x+2m=7$
$\Leftrightarrow x=7-2m$
$y=2-x=2-(7-2m)=2m-5$
Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$
Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$
Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$
b.
$xy>0$
$\Leftrightarrow (7-2m)(2m-5)>0$
$\Leftrightarrow 7> 2m> 5$
$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$
Do $m$ nguyên nên $m=3$
Thử lại thấy đúng.
Cho hệ phương trình x + 1 y = 2 2 x − 3 y = 1 . Biết nghiệm của hệ phương trình là (x; y), tính 5 x y
A. 35 3
B. 21 5
C. 7 3
D. 21 25
ĐK: y ≠ 0
Ta có
x + 1 y = 2 2 x − 3 y = 1 ⇔ 2 x + 2 y = 4 2 x − 3 y = 1 ⇔ x + 1 y = 2 5 y = 3 ⇔ y = 5 3 x + 1 5 3 = 2 ⇔ x = 7 5 y = 5 3
Vậy hệ phương trình có 1 nghiệm duy nhất ( x ; y ) = 7 5 ; 5 3 ⇒ 5 x y = 21 5
Đáp án: B
Cho hệ phương trình x 2 - y 3 = 1 x + y 3 = 2 . Biết nghiệm của hệ phương trình là (x; y), tính x + 3 3 y
A. 3 2 + 2
B. - 3 2 - 2
C. 2 2 - 2
D. 3 2 - 2
Cho hệ phương trình x 2 - y 3 = 1 x + y 3 = 2 . Biết nghiệm của hệ phương trình là (x; y), tính x + 3 3 y
A. 3 2 + 2
B. - 3 2 - 2
C. 2 2 - 2
D. 3 2 - 2