Tìm m để mặt cầu có phương trình x 2 + y 2 + z 2 - 2 x + 4 y - 4 z - m = 0 có bán kính R = 5.
A. m = 16
B. m = 4
C. m=-4
D. m=-16
Trong không gian Oxyz , cho ba mặt cầu lần lượt có phương trình là ( x + 5 ) 2 + ( y - 1 ) 2 + z 2 = 5 ; x 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 6 và ( x + 1 ) 2 + y 2 + ( z - 4 ) 2 = 9 . Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y , Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu. Giả sử MX = MY = MZ , khi đó tập hợp các điểm M là đường thẳng có vectơ chỉ phương là
Mặt phẳng tiếp xúc với mặt cầu ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 9 tại điểm M(6;-2;3) có phương trình là
Trong không gian tọa độ Oxyz, cho A(-3;3;-3) thuộc mặt phẳng ( α ) có phương trình 2x - 2y + z + 15 = 0 và mặt cầu (S): ( x - 2 ) 2 + ( y - 3 ) 2 + ( z - 5 ) 2 = 100 . Đường thẳng qua ∆ , nằm trên mặt phẳng ( α ) cắt (S) tại M, N. Để độ dài MN lớn nhất thì phương trình đường thẳng ∆ là
A. x + 3 1 = y - 3 4 = z + 3 6
B. x + 3 16 = y - 3 11 = z + 3 - 10
C. x = - 3 + 5 t y = 3 z = - 3 + 8 t
D. x - 1 3 = y - 3 - 1 = z + 3 3
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Viết phương trình mặt phẳng tiếp xúc với mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 3 ) 2 = 9 tại điểm M(6; -2; 3).
A. 4x-y-26=0
B. 4x+y-26=0
C. 4x+y+26=0
D. 4x-y+26=0
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 3 và hai đường thẳng d x : x - 2 1 = y 2 = z - 1 - 1 ; △ : x 1 = y 1 = z - 1 - 1 Phương trình nào dưới đây là phương trình mặt phẳng cắt mặt cầu (S) theo giao tuyến là một đường tròn (C) có bán kính bằng 1 và song song với d và △ .
Tìm m để
a) \(x^2+y^2+z^2-4x+2my+6z+13=0\) là 1 mặt cầu
b) \(x^2+y^2+z^2-2mx+2\left(m-2\right)y+2\left(m+3\right)z+8m+37=0\) là 1 mặt cầu
PT cơ bản của mặt cầu: \(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Đk: \(a^2+b^2+c^2-d>0\)
a) \(x^2+y^2+z^2-4x+2my+6z+13=0\left(a=2;b=-m;c=-3;d=13\right)\left(1\right)\)
PT (1) là PT mặt cầu \(\Leftrightarrow\)\(2^2+\left(-m\right)^2+\left(-3\right)^2-13>0\Leftrightarrow4+m^2+9-13>0\Leftrightarrow m^2>0\)
Mà \(m^2\ge0\forall x\Rightarrow m\ne0\)
b) \(x^2+y^2+z^2-2mx+2\left(m-2\right)y+2\left(m+3\right)z+8m+37=0\left(a=m;b=-m+2;c=-m-3;d=8m+37\right)\left(2\right)\)
Có: \(m^2+\left(-m\right)^2+\left(-m+2\right)^2-8m-37>0\Leftrightarrow3m^2-12m-33>0\Leftrightarrow\left[{}\begin{matrix}m< 2-\sqrt{15}\\m>2+\sqrt{15}\end{matrix}\right.\Leftrightarrow m\in(-\infty;2-\sqrt{15}]\cup[2+\sqrt{15};+\infty)\)
Trong không gian với hệ toạ độ \(Oxyz\), cho mặt cầu \(\left(S\right)\) có phương trình \(x^2+\left(y+1\right)^2+\left(z-2\right)^2=10\) và và đường thẳng \(\Delta\) có phương trình chính tắc là \(\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z-1}{2}\). Gọi \(\left(P\right)\) là mặt phẳng thay đổi chứa \(\Delta\). Khi \(\left(P\right)\cap\left(S\right)\) theo đường tròn có bán kính nhỏ nhất, hãy viết phương trình mặt phẳng \(\left(P\right)\) và tính bán kính đường tròn giao tuyến đó.
A. \(\left(P\right):2x-2y+3z+4=0; r=1\)
B. \(\left(P\right):x+y+4z-2=0;r=6\)
C. \(\left(P\right):2x+2y-z+1=0;r=3\)
D. \(\left(P\right):3x-y+2z-1=0;r=4\)
Để tìm phương trình mặt phẳng (P) và tính bán kính đường tròn giao tuyến, ta cần tìm điểm giao giữa mặt cầu (S) và đường thẳng Δ. Đầu tiên, ta thay đổi phương trình đường thẳng Δ từ phương trình chính tắc sang phương trình tham số.
Phương trình tham số của đường thẳng Δ là: x = t y = 1 + t z = 1 + 2t
Tiếp theo, ta thay các giá trị x, y, z vào phương trình mặt cầu (S) để tìm điểm giao: (t)2 + (1 + t + 1)2 + (1 + 2t - 2)2 = 10 t2 + (t + 2)2 + (2t - 1)2 = 10 t2 + t2 + 4t + 4 + 4t2 - 4t + 1 - 10 = 0 6t2 + 4t - 5 = 0
Giải phương trình trên, ta tìm được t = 1/2 và t = -5/6. Thay t vào phương trình tham số của Δ, ta có các điểm giao là: Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Tiếp theo, ta tìm phương trình mặt phẳng (P) đi qua hai điểm giao này. Sử dụng công thức phương trình mặt phẳng đi qua hai điểm: (x - x1)(y2 - y1) - (y - y1)(x2 - x1) = 0
Điểm giao thứ nhất: (1/2, 3/2, 5/2) Điểm giao thứ hai: (-5/6, 1/6, -1/6)
Thay các giá trị vào công thức, ta có: (x - 1/2)((1/6) - (3/2)) - (y - 3/2)((-5/6) - (1/2)) + (z - 5/2)((-1/6) - (3/2)) = 0 -2x + 2y - z + 4 = 0
Vậy phương trình mặt phẳng (P) là: -2x + 2y - z + 4 = 0.
Tiếp theo, để tính bán kính đường tròn giao tuyến, ta tính khoảng cách từ tâm mặt cầu đến mặt phẳng (P). Khoảng cách này chính bằng bán kính đường tròn giao tuyến.
Đặt điểm A là tâm mặt cầu (x0, y0, z0) = (0, -1, 2). Khoảng cách từ A đến mặt phẳng (P) được tính bằng công thức: d = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)
Thay các giá trị vào công thức, ta có: d = |(0)(-2) + (-1)(2) + (2)(-1) + 4| / sqrt((-2)^2 + 2^2 + (-1)^2) d = 5 / sqrt(9) d = 5/3
Vậy bán kính đường tròn giao tuyến là 5/3.
Vậy đáp án đúng là: (P): -2x + 2y - z + 4 = 0; r = 5/3
Trong không gian Oxyz cho điểm M(2;1;1) mặt phẳng α : x+y+z-4=0 và mặt cầu (S): x - 3 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?