Biểu diễn hình học tập nghiệm của các bất phương trình sau: 2x - 3y + 5 ≥ 0.
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau:
\(\left\{ \begin{array}{l}x - 2y + 3 \le 0\\x + 3y > - 2\\x \le 0\end{array} \right.\)
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.
Biểu diễn hình học tập nghiệm của các bất phương trình sau: 2x - 1 < 0
Miền nghiệm là nửa mặt phẳng bờ 2x – 1 = 0 chứa O (bỏ bờ).
Biểu diễn hình học tập nghiệm của các bất phương trình sau: 2x + y > 1
Miền nghiệm là nửa mặt phẳng bờ 2x + y = 1 không chứa O (bỏ bờ).
Biểu diễn hình học tập nghiệm của các bất phương trình sau: 3 + 2y > 0
Điểm O(0;0) có tọa độ thỏa mãn bất phương trình, do đó miền nghiệm là nửa mặt phẳng bờ 3 + 2y = 0 chứa O (bỏ bờ).
Biểu diễn hình học tập nghiệm của các hệ bất phương trình sau :
a) \(\left\{{}\begin{matrix}2x-1\le0\\-3x+5< 0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3-y< 0\\2x-3y+1>0\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}2x-1\le0\\-3x+5< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x>\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow x\in\varnothing\).
b) Vẽ hai đường thẳng \(y=3;2x-3y+1=0\).
Vì điểm \(O\left(0;0\right)\) có tọa độ thỏa mãn bất phương trình \(2x-3y+1>0\) và không thỏa mãn bất phương trình \(3-y< 0\) nên phần không tô màu là miền nghiệm của hệ bất phương trình: \(\left\{{}\begin{matrix}3-y< 0\\2x-3y+1>0\end{matrix}\right.\).
Biểu diễn hình học tập nghiệm của các bất phương trình sau: -3x + y + 2 ≤ 0
Miền nghiệm là nửa mặt phẳng bờ -3x + y = -2 không chứa O.
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau: x 3 + y 2 - 1 < 0 x + 1 2 - 3 y 2 ≤ 2 x ≥ 0
Ta vẽ các đường thẳng 2x + 3y = 6 (d1); 2x – 3y = 3 (d2); x = 0 (trục tung).
Điểm B(1; 0) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta gạch đi các nửa mặt phẳng bờ (d1); (d2) và trục tung không chứa điểm B.
Miền không bị gạch chéo (tam giác MNP, kể cả cạnh MP và NP, không kể cạnh MN) là miền nghiệm của hệ bất phương trình đã cho.
Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc nhất hai ẩn sau: x - 2 y < 0 x + 3 y > - 2 y - x < 3
Ta vẽ các đường thẳng x – 2y = 0 (d1) ; x + 3y = –2 (d2) ; –x + y = 3 (d3).
Điểm A(–1; 0) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta gạch đi các nửa mặt phẳng bờ (d1); (d2); (d3) không chứa điểm A.
Miền không bị gạch chéo trong hình vẽ, không tính các đường thẳng là miền nghiệm của hệ bất phương trình đã cho.
Biểu diễn hình học tập nghiệm của các bất phương trình sau: x - 5y < 2
Miền nghiệm là nửa mặt phẳng bờ -x + 5y = -2 chứa O (bỏ bờ)