Cho 4 x n + 2 – 8 x n (n Є N*). Khi đặt nhân tử chung x n ra ngoài thì nhân tử còn lại là
A. 4 x 2 – 2
B. 4 x 2 – 8
C. x 2 – 4
D. x 2 – 2
Cho M = ( x 4 y n + 1 − 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) − 20 x 4 y : 5 x 2 y (n Є N, x;y ≠ 0)
Chọn câu đúng
A. Giá trị của M luôn là số âm
B. Giá trị của M luôn là số dương
C. Giá trị của M luôn bằng 0
D. Giá trị của M luôn bằng 1
Ta có
M = ( x 4 y n + 1 - 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 20 x 4 y : 5 x 2 y = ( x 4 y n + 1 : 1 2 x 3 y n ) - ( 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 4 x 2 = 2 x 4 - 3 y n + 1 - n – x 3 - 3 y n + 2 - n – 4 x 2 = 2 x y – y 2 – 4 x 2 = - y 2 – 2 x y + x 2 + 3 x 2 = - [ ( x – y ) 2 + 3 x 2 ]
Vì với x;y ≠ 0 thì ( x – y ) 2 + 3 x 2 > 0 nên - [ ( x – y ) 2 + 3 x 2 ] < 0 ; Ɐ x;y ≠ 0
Hay giá trị của M luôn là số âm
Đáp án cần chọn là: A
Cho a x 2 – 5 x 2 – ax + 5x + a – 5 = a + m x 2 – x + n với với m, n Є R. Tìm m và n
A. m = 5; n = -1
B. m = -5; n = -1
C. m = 5; n = 1
D. m = -5; n = 1
Ta có
a x 2 – 5 x 2 – a x + 5 x + a – 5 = x 2 a – 5 – x a – 5 + a – 5 = a – 5 x 2 – x + 1
Suy ra m = -5; n = 1
Đáp án cần chọn là: D
Cho n Є N và n - 1 không chia hết cho 4. Chứng minh rằng 7 n + 2 không thể là số chính phương.
: Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
c) 27 - 5n chia hết cho n
vì 5n chia hêt cho n => để 27 - 5n chia hết cho n thì 27 phải chia hết cho n
=>n Є {1;3; 9;27}
d) n+6 chia hết cho n + 2
ta có n+6= (n+2) +4
vì n+2 chia hết cho n+2 =>để (n+2) +4 chia hết cho n + 2 thì 4 phải chia hết cho n+2
=>(n+2) Є {2;4} (vì n+2 >=2)
=>n Є {0;2}
e) 2n + 3 chia hết cho n + 2 - 2 hay 2n + 3 chia hết cho n
vì 2n chia hết cho n =>để 2n + 3 chia hết cho n thì 3 phải chia hêt cho n
=>n Є {1;3}
f) 3n + 1 chia hết cho 11 - 2n
để 11 -2n >=0 => n Є {0;1;2;3;4;5}
mặt khác để 3n + 1 chia hết cho 11 - 2n thì
3n+1 >= 11-2n =>5n - 2n+1 >=10-2n +1
=>5n >= 10 =>n>=2 => n Є {2;3;4;5}
* với n=2 => 3n+1=7 ; 11-2n=7 =>3n+1 chia hết cho 11-2n vậy n=2 thỏa mãn
*với n=3 => 3n+1=10; 11-2n=5 =>3n+1 chia hết cho 11-2n vậy n=3 thỏa mãn
* với n=4 =>3n+1=13; 11-2n=3 =>3n+1 không chia hết cho 11-2n vậy n=4 không thỏa mãn
*với n=5 =>3n+1=16; 11-2n=1 =>3n+1 chia hết cho 11-2n vậy n=5 thỏa mãn
vậy n Є {2;3;5}
Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
a. n + 6 chia hết cho n + 2
=> n + 2 + 4 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 4 chia hết cho n + 2
=> n + 2 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
Mà n thuộc N
=> n thuộc {0; 2}.
b. 2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2.(n - 2) + 7 chia hết cho n - 2
Mà 2.(n - 2) chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {-7; -1; 1; 7}
Mà n thuộc N
=> n thuộc {1; 3; 9}.
c. 3n + 1 chia hết cho 11 - 2n
=> 3n + 1 chia hết cho -(11 - 2n)
=> 3n + 1 chia hết cho 2n - 11
=> 2.(3n + 1) chia hết cho 2n - 11
=> 6n + 2 chia hết cho 2n - 11
=> 6n - 33 + 35 chia hết cho 2n - 11
=> 3.(2n - 11) + 35 chia hết cho 2n - 11
=> 35 chia hết cho 2n - 11
=> 2n - 11 thuộc Ư(35) = {-35; -7; -5; -1; 1; 5; 7; 35}
Mà n thuộc N
=> n thuộc {2; 3; 5; 6; 8; 9; 23}
d. n2 + 4 chia hết cho n + 1
=> n2 + 4 - n.(n + 1) chia hết cho n + 1
=> n2 + 4 - n2 - n chia hết cho n + 1
=> -n + 4 chia hết cho n + 1
=> -(n - 4) chia hết cho n + 1
=> n - 4 chia hết cho n + 1
=> n + 1 - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}
Mà n thuộc N
=> n thuộc {0; 4}.
a)2 vì 2+6 chia hết 2+2 =8 chia hết 4
Số phần tử của tập hợp A = {x Є N*|x <32} là:
(có thể cho Nguyên lời giải, cám ơn nhiều)
x thuộc N* => x > 1
x < 32 => x < 31
Số phần tử của A là:
(31 - 1) : 1 + 1 = 31 (phần tử)
B = { x є N / 10 ≤ 10.x < 20 }
các bạn giúp mình với
Vì x € N nên 10x phải là số tròn chục
Ta có tập 10x = {10}
Suy ra, A = {1}
Tìm n Є N để
a) n + 4 chia hết cho n
b) 3n + 7 chia hết cho n
c) 27 - 5n chia hết cho n
d) n+6 chia hết cho n + 2
e) 2n + 3 chia hết cho n + 2 - 2
f) 3n + 1 chia hết cho 11 - 2n
giúp mình với ạ
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
c) 27 - 5n chia hết cho n
vì 5n chia hêt cho n => để 27 - 5n chia hết cho n thì 27 phải chia hết cho n
=>n Є {1;3; 9;27}
Cho 56 x 2 – 45y – 40xy + 63x = 7 x - 5 y m x + n với m, n Є R. Tìm m và n
A. m = 8; n = 9
B. m = 9; n = 8
C. m = -8; n = 9
D. m = 8; n = -9
Ta có
56 x 2 – 45 y – 40 x y + 63 x = 56 x 2 + 63 x – 45 y + 40 x y = 7 x 8 x + 9 – 5 y 8 x + 9 = 7 x - 5 y 8 x + 9
Suy ra m = 8; n = 9
Đáp án cần chọn là: A