Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VH
Xem chi tiết
HT
Xem chi tiết
NM
Xem chi tiết
H24
25 tháng 5 2015 lúc 10:39

M = 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )

M gồm 99 tổng, số 1 có mặt ở 99 tổng, số 2 có mặt ở 98 tổng,......., số 98 có mặt ở 2 tổng, số 99 có mặt ở 1 tổng

Vậy:

M = 1.99 + 2.98 + ...... + 98.2 + 99.1 = N 

Vậy M = N

Bình luận (0)
LH
25 tháng 5 2015 lúc 10:41

Ta có:

M=1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ....+ ( 1 + 2 + 3 + ......+ 99 )

=1+1+2+1+2+3+...+1+2+3+...+99

=(1+1+...+1+1)+(2+2+2+...+2)+...+(98+98)+99

  -----99 số 1--;   --98 số 2--------;...

=1.99+2.98+...+98.2+99.1

Mà N = 1. 99 + 2 . 98 + 3 . 97 + ....... + 99 . 1

=>M=N

       

 

Bình luận (0)
NN
Xem chi tiết
PD
6 tháng 8 2018 lúc 21:31

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A-A=2A=1-\frac{1}{3^{99}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}=\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)

Bình luận (0)
H24
6 tháng 8 2018 lúc 21:42

So sánh : 

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)\(2A=1-\frac{1}{3^{99}}\)

\(A=\frac{1-\frac{1}{3^{99}}}{2}=\frac{1}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3^{99}.2}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\)

Bình luận (0)
DH
28 tháng 8 2021 lúc 9:44

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(A< \frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
ED
Xem chi tiết
IU
Xem chi tiết
TP
20 tháng 8 2018 lúc 21:09

a)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow2A< 1\)

\(\Rightarrow A< \frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 4 2016 lúc 21:53

ai giúp mik mik cho mik cần gấp

Bình luận (0)
AG
Xem chi tiết
H24
27 tháng 7 2018 lúc 7:56

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)\(< 1\)

Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}< 1\)

Bình luận (0)
HM
27 tháng 7 2018 lúc 8:00

Đặt :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=1-\frac{1}{100}\)

 \(=\frac{99}{100}\)

Vậy  \(A=\frac{99}{100}\)

Vì \(\frac{99}{100}< 1\)nên \(A< 1\)

Học tốt #

Bình luận (0)
PD
27 tháng 7 2018 lúc 8:00

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

Bình luận (0)