Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 − x 2 , trục tung, đường thẳng x = 1 . Tính thể tích V của khối tròn xoay thu được khi quay hình H quanh trục Ox.
A. V = πln 2 4
B. V = πln 2 2
C. V = ln 2 4
D. V = ln 2 2
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Cho hình (H) là hình phẳng giới hạn bởi 2 đồ thị của 2 hàm số y = x 2 và y = x+2 Diện tích của hình (H) bằng
A. 7/6
B. -9/2
C. 3/2
D. 9/2
Cho hình (H) là hình phẳng giới hạn bởi 2 đồ thị của 2 hàm số y = x2 và y = x+2. Diện tích của hình (H) bằng
A. 7/6
B. - 9/2
C. 3/2
D. 9/2
Đáp án D
Phương pháp:
Diện tích hình phẳng tạo bởi hai đồ thị hàm số y = f(x), y = g(x) và các đường thẳng x = a, x = b, a<b
Cách giải: Phương trình hoành độ giao điểm của y = x2 và y = x+2
Diện tích hình (H):
Gọi S là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: y = x 3 - 3 x ; y = x . Tính S ?
A. S = 4
B. S = 8
C. S = 2 .
D. S = 0
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x=3. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x=3. Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành.
Phương pháp:
- Tìm nghiệm của phương trình hoành
độ giao điểm.
- Sử dụng công thức tính thể tích
Cách giải:
Xét phương trình hoành độ giao điểm
Thể tích khối tròn xoay tạo thành
khi quay (H) quanh Ox là:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = x 2 - 4 , trục Ox, đường thẳng x = 3 . Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng (H) quanh trục hoành
A. V = 7 π 3 (đvtt)
B. V = 5 π 3 (đvtt)
C. V = 2 π (đvtt)
D. V = 3 π (đvtt)
Biết đồ thị hàm số f ( x ) = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2 .
B. S 1 S 2 = 1 4 .
C. S 1 S 2 = 1 2 .
D. S 1 S 2 = 1 .
Đáp án D
Phương trình hoành độ giao điểm của đồ thị f ( x ) và Ox: a x 4 + b x 2 + c = 0 .
Để phương trình có bốn nghiệm
Gọi x 1 , x 2 , x 3 , x 4 lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0 và x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a > 0 .
Khi đó
Suy ra x 1 = - - 5 b 6 a ; x 2 = - - b 6 a ; x 3 = - b 6 a ; x 4 = - b 6 a .
Do đồ thị hàm số f ( x ) nhận trục tung làm trục đối xứng nên ta có:
Suy ra
Vậy S 1 = S 2 hay S 1 S 2 = 1 .
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b] có đồ thị như hình bên và c ∈ a ; b . Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f ( x ) và các đường thẳng y = 0 , x = a , x = b . . Mệnh đề nào sau đây sai?
A. S = ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a c f x d x − ∫ c b f x d x
C. S = ∫ a b f x d x
D. S = ∫ a c f x d x + ∫ b c f x d x
Gọi S là số đo diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số y = 2 x 2 + 3 x + 1 và y = x 2 − x − 2. Tính cos π S
A.0
B. − 2 2 .
C. 2 2 .
D. 3 2 .
Đáp án B
Xét phương trình
2 x 2 + 3 x + 1 = x 2 − x − 2 ⇔ x 2 + 4 x + 3 = 0 ⇔ x = − 1 x = − 3
Vậy diện tích hình phẳng cần tính là
S = ∫ − 3 − 1 x 2 + 4 x + 3 d x = ∫ − 3 − 1 x 2 + 4 x + 3 d x = 4 3
Vậy cos π S = − 2 2 .