Cho hàm số y = f x xác định và liện tục trên − 2 ; 2 và có đồ thị là đường cong trong hình vẽ bên
Hàm số y = f x đạt cực tiểu tại điểm nào sau đây?
A. x = − 3
B. x = 0
C. x = 2
D. x = - 1
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x) +x .
A. Không có giá trị
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f'(x). Biết rằng đồ thị hàm số f'(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x.
A. Không có giá trị
Cho hàm số y=f(x) xác định trên ℝ \ 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ
Hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 4.
B. 3.
C. 2.
D. 5.
Đáp án A
Từ bảng biến thiên của hàm số y=f(x), suy ra bảng biến thiên của hàm số y = f ( x ) là
Dựa vào bảng biến thiên, ta suy ra hàm số có 4 điểm cực trị.
Hàm số y= f(x) xác định, liên tục trên R và đạo hàm f ' ( x ) = 2 ( x - 1 ) 2 ( 2 x + 6 ) . Khi đó hàm số f(x)
A. Đạt cực đại tại điểm x= 1
B. Đạt cực tiểu tại điểm x= -3
C. Đạt cực đại tại điểm x= -3
D. Đạt cực tiểu tại điểm x= 1
Cho hàm số y= f(x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’( x) và hàm số y= f’( x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên R
B. Hàm số y= f( x) nghịch biến trên R.
C. Hàm số y= f( x) chỉ nghịch biến trên khoảng .
D. Hàm số y= f( x) nghịch biến trên khoảng (0; + ∞) .
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Cho hàm số y = f(x) liên tục và xác định trên R. Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số f( x) đồng biến trên R.
B. Hàm số f( x) nghịch biến trên R.
C. Hàm số f(x) chỉ nghịch biến trên khoảng (0; 1) .
D. Hàm số f(x) đồng biến trên khoảng (0; + ∞) .
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .
Cho hàm số y = f(x) hàm xác định trên R\{2}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau. Mệnh đề nào dưới đây đúng?
A. Hàm số có giá trị lớn nhất bằng 10
B. Giá trị cực đại của hàm số là y C D = 10
C. Giá trị cực tiểu của hàm số là y C T = - 3
D. Giá trị cực đại của hàm số là y C D = 3
Cho hàm số y = f(X) xác định trên R\{-1} , liên tục trên từng khoảng xác định và có bảng biến thiên như hình dưới đây.
Số nghiệm của phương trình [ f ( x ) ] 2 + f ( x ) + x x = 1 là
A. 1.
B. 0.
C. 2.
D. 3.