tìm 12 số nguyên dương để tổng của chúng bằng tích của chúng
tìm 12 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Ta có: 12.0 = 0 + 0 + ..... + 0 (có 12 số 0) = 0
Ta lại có: 012 = 0 x 0 x 0 x .... x 0 (có 12 số 0) = 0
Ta thấy 2 đáp án đều bằng nhau, vậy số cần tìm là 0
0 x 0 luôn luôn bằng 0 dù cộng bao nhiêu đi nữa
0 + 0 luôn luôn bằng 0 dù nhân bao nhiêu đi nữa
tìm 12 số nguyên dương để tổng của chúng bằng tích của chúng
giải giúp tui
nếu đúng tui like cho
dễ thì làm đi
dễ =dễ của cái cây à?
1. Tìm 3 số nguyên dương biết tích của chúng gấp đôi tổng của chúng.
2. Tìm 4 số nguyên dương biết tích của chúng bằng tổng của chúng
1,
Gọi 3 số cần tìm là \(x,y,z\left(x,y,z\in Z;x,y,z>0\right)\)
Ta có : \(xyz=2\left(a+b+c\right)\)
Giả sử :\(x\ge y\ge z\Leftrightarrow xyz\le2.3x\)
\(xy\le6\) mà\(x,y\in Z\)
\(\Leftrightarrow xy\in\left\{1;2;3;4;5;6\right\}\)
Giải các trường hợp, ta được (x,y,z) là (1,3,8) ; (1,4,5) ; (2,2,4) và các hoán vị
Mk đang cần
Có thể giải hết trường hợp đó ra ko
tìm 4 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Tìm 3 số nguyên dương có tổng của chúng bằng nửa tích của chúng
Tổng quát đây: N số nguyên dương sao cho tổng và tích của chúng bằng nhau là
N, 2, và N-2 số 1
Áp dụng cho trường hợp N = 3 được 3 số: 3,2,1
Quên mất, cách làm:
Với N= 3.
Giả sử tồn tại 3 số bằng nhau a thỏa mãn điều trên: a^3 = 3.a ~~>a^2 = 3, không tồn tại a nguyên dương. Như vậy 3 số cần tìm không bằng nhau.
Gọi a là số lớn nhất trong 3 số a,b,c đó: ~~>a.b.c = a+b+c<3.a thế thì b.c<3. Vì b,c nguyên dương nên b.c = 2 hoặc b.c= 1. Điều này có nghĩa là b= 1 hoặc c =1.
Không mất tính tổng quát, giả sử c= 1. Thế thì a.b = a+b+1 ~~> a.b -a -b -1 = 2~~>(a-1)(b-1) = 2 ~~~>a,b là hai số 2 và 3
Kết luận 3 số cần tìm là 1,2,3
thế thì tổng của chúng = tích của chúng rồi bạn ơi
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Tìm bốn số nguyên dương sao cho tổng của chúng bằng tích của chúng.
Gọi 4 số tự nhiên là a, b, c, d (a, b, c, d∈N∗)
Không mất tính tổng quát, giả sử a≥b≥c≥d≥1
Ta có:
abcd=a+b+c+d (1)
⇒abcd≤4a
⇒bcd≤4 (a>0
⇒d3≤4
⇒d=1
Với d=1, ta có:
(1)⇔abc=a+b+c+1 (2)
⇒abc≤3a+1
⇒bc≤3+1a≤4
⇒c2≤4
⇒c=1∨c=2
TH1: c=1. Ta có:
(2)⇔ab=a+b+2
⇔(a−1)(b−1)=3
Vì a≥1; b≥1⇒a−1≥0; b−1≥0a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó a−1=3; b−1=1⇔a=4
TH2: c=2. Ta có:
(2)⇔ab=a+b+3(2)
⇔(a−1)(b−1)=4
Vì a≥1; b≥1⇒a−1≥0; b−1≥0
Mà a≥b⇒a−1≥b−1
Do đó: a−1=4; b−1=1a−1=4; b−1=1 hoặc a−1=2; b−1=2
⇔a=5; b=2⇔a=5; b=2 hoặc a=3; b=3
Vậy 4 số tự nhiên cần tìm là (1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)(1; 1; 2; 4); (1; 2; 3; 3); (1; 2; 2; 5)
tìm 4 số nguyên dương sao cho tổng của chúng bằng tích của chúng
Ta có a.b.c = a+b+c
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt.
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. ﴾b khác 2 thì tích b.c > 3 là vô lý﴿.
Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3.
Gọi các số nguyên dương cần tìm là a,b,c,d (\(a,b,c,d>0\))
Giả thiết : \(a+b+c+d=abcdf\)
Không mất tính tổng quát, ta giả sử a là số lớn nhất. Khi đó
\(abcd=a+b+c+d\le4a\Rightarrow bcd\le4\)
Ta có \(4=1.1.4=2.2.1\) . Vì vai trò của b,c,d là như nhau , do đó ta chỉ cần chọn hai trường hợp là b = c = 1, d = 4 suy ra : a+2+4 = 4a => 3a = 6 => a = 2
Trường hợp còn lại : b = c = 2 , d = 1 suy ra a + 4 + 1 = 4a => a = 5/3(loại)
Vậy được các số cần tìm là 2,1,1,4
tìm 3 số nguyên dương sao cho tổng của chúng bằng tích của chúng
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>\(\frac{x+y+z}{xyz}=\frac{xyz}{xyz}\)
\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\)
\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Nếu \(x\ge y\ge z\ge1\)thì
\(1=\frac{1}{yz}=\frac{1}{xz}=\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
=>\(1\le\frac{3}{z^2}\)
\(\Leftrightarrow z^2\le3\)
nên chỉ có z=1 mới thỏa mãn \(z^2\le3\text{ và }z>0\)
suy ra 3 số đó là 1;2;3
gọi ba số đó lần lượt là: x;y;z (x;y;z >0 )
theo đề ta có:
x+y+z=xyz
=>x+y+zxyz =xyzxyz
⇔xxyz +yxyz +zxyz =1
⇔1yz +1xz +1xy =1
Nếu x≥y≥z≥1thì
1=1yz =1xz =1xy ≤1z2 +1z2 +1z2 =3z2
=>1≤3z2
⇔z2≤3
nên chỉ có z=1 mới thỏa mãn z2≤3 và z>0
suy ra 3 số đó là 1;2;3