Tìm đạo hàm của hàm số sau: y = x a 2 - x 2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm đạo hàm của hàm số sau: y = (x - a)(x - b)
a) Dùng định nghĩa tỉnh đạo hàm của hàm số \(y = x\) tại điểm \(x = {x_0}\).
b) Nhắc lại đạo hàm của các hàm số \(y = {x^2},y = {x^3}\) đã tìm được ở bài học trước. Từ đó, dự đoán đạo hàm của hàm số \(y = {x^n}\) với \(n \in {\mathbb{N}^*}\).
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)
Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).
b) Ta có:
\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)
Xét hàm số \(y = {x^3} - 4{x^2} + 5\)
a) Tìm \(y'\)
b) Tìm đạo hàm của hàm số \(y'\)
\(a,y'=\left(x^3-4x^2+5\right)'=3x^2-8x\\ b,y''=\left(3x^2-8x\right)'=6x-8\)
Tìm đạo hàm cấp hai của hàm số sau: y = x + 1 x - 2
Tìm đạo hàm cấp hai của hàm số sau y = 2 x + 1 x 2 + x - 2
Tìm đạo hàm của hàm số sau: y = x + x + x
Tìm đạo hàm của các hàm số sau: y = cos x 1 + x
Tìm đạo hàm của hàm số sau: y = 2 x 2 + x + 1 x 2 - x + 1
Tìm đạo hàm của hàm số sau: y = ( x + 1 ) x + 2 2 x + 3 3
y ′ = 2 ( x + 2 ) x + 3 2 ( 3 x 2 + 11 x + 9 )
Tìm đạo hàm của hàm số sau: y = x + 1 x + 0 , 1 . x 10