tìm nghiệm nguyên dương của phương trình (x+y)^4=40y+1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm nghiệm nguyên dương của phương trình: (x+y)4=40y+1
Ta có: x+y >= y+1 (do x>=1)
=> (x+y)^4 >= (y+1)^4
=> 40y +1 = (x+y)^4 >= (y+1)^4 (1*)
Mặt khác nhận thấy (y+1)^4 > 40y +1 nếu y >=3 (2*)
{ Do (y+1)^4 = y^4 + 4y^3 + 6y^2 + 4y +1 >= 27y + 36y + 18y +4y +1 >40y+1
Thay y^4 = y^3.y >= 3^3.y =27y; 4y^3 = 4.y^2.y >= 4.9.y =36y ....}
Từ (1*,2*)
=> y=1, hay y=2
Thay vao ta có nghiệm x=1; y=2 là so duy nhất
Tìm nghiệm nguyên dương của phương trinh \(\left(x+y\right)^4=40y+1\)
Cho mình hỏi xem cách làm này của mình có đúng không nhé.
Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1
Bài giải:
Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.
- Nếu n=1 thì y=0 (loại)
- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)
- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)
- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)
- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)
- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)
- Nếu n=7 thì y=60 (loại vì n<y).
Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.
Vậy phương trình có 1 cặp nghiệm nguyên (x;y) là: (1;2).
Cho mình hỏi xem cách làm này của mình có đúng không nhé.
Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1
Bài giải:
Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.
- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)
- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)
- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)
- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)
- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)
- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)
- Nếu n=7 thì y=60 (loại vì n<y).
Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.
Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).
Cho mình hỏi xem cách làm này của mình có đúng không nhé.
Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1
Bài giải:
Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.
- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)
- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)
- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)
- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)
- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)
- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)
- Nếu n=7 thì y=60 (loại vì n<y).
Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.
Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
Tìm nghiệm nguyên dương của phương trình \(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\).
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
(x,y) hoán vị của (4,9) . có vẻ hoạt động
tìm nghiệm nguyên dương của phương trình \(\frac{4}{x}+\frac{2}{y}=1\)
\(\frac{4y+2x}{xy}=1\) <=> \(4y+2x=xy\)
<=> \(4y-xy+2xy-8=-8\)
<=> \(y\left(4-x\right)-2\left(4-x\right)=-8\)
<=> \(\left(y-2\right)\left(4-x\right)=-8\)
Bạn giải tiếp nha !
tìm nghiệm nguyên dương của phương trình
4(x+y)=xy+11