Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng 2, ABC ^ = 60 0 . Biết SO ⊥ ABCD và thể tích khối chóp S.ABCD bằng 2. Tính SA.
A. SA = 3
B. SA = 2
C. SA = 1
D. SA = 2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O có cạnh bằng a, góc BAC ^ = 60 ° , SO ⊥ ( ABCD ) và SO = 3a/4. Tính thể tích khối chóp S.ABCD.
A. a 3 3 8
B. a 3 3 4
C. a 3 4
D. 3 a 3 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O có cạnh bằng a, góc BAD = 60 ° với AC cắt BD tại O, SO ⊥ ( ABCD ) và SO = 3a/4. Tính thể tích khối chóp S.ABCD.
Lời giải:
$\widehat{BAD}=60^0\Rightarrow \widehat{BAO}=30^0$
$\frac{BO}{AB}=\sin \widehat{BAO}=\sin 30^0=\frac{1}{2}$
$\Rightarrow BO=\frac{AB}{2}=\frac{a}{2}$
$BD=2BO=a$
$\frac{AO}{AB}=\cos \widehat{BAO}=\cos 30^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AO=\frac{\sqrt{3}a}{2}$
$\Rightarrow AC=\sqrt{3}a$
$S_{ABCD}=\frac{BD.AC}{2}=\frac{\sqrt{3}a^2}{2}$
$V_{S.ABCD}=\frac{1}{3}.SO.S_{ABCD}=\frac{1}{3}.\frac{3a}{4}.\frac{\sqrt{3}a^2}{2}=\frac{\sqrt{3}a^3}{8}$
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a,
A B C ⏜ = 60 ° , S A ⊥ A B C D , S A = 3 a 2 . Gọi O là tâm hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng
A. 3 a 4
B. 3 a 8 .
C. 5 a 8
D. 5 a 4 .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc B A D ^ = 60 ° có SO vuông góc mặt phẳng (ABCD) và SO = a, Khoảng cách từ O đến mặt phẳng (SBC) là
A. a 57 3
B. a 3 4
C. a 57 19
D. 2 a 3
Đáp án C
Kẻ O K ⊥ B C , O H ⊥ S K như hình vẽ khi đó OH là khoảng cách từ O tới (SBC)
Dễ thấy Δ A B D đều
⇒ O K = O B . sin 60 0 = a 2 . 3 2 = a 3 4
Ta có: 1 O H 2 = 1 O K 2 + 1 S O 2 = 16 3 a 2 + 1 a 2 = 19 3 a 2
⇒ O H = a 57 19
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB=a, B A D ^ = 60 ° SO ⊥ (ABCD) và mặt phẳng (SCD) tạo với mặt đáy một góc 60 ° . Tính thể tích khối chóp S.ABCD
A. V S . A B C D = 3 a 3 12
B. V S . A B C D = 3 a 3 24
C. V S . A B C D = 3 a 3 8
D. V S . A B C D = 3 a 3 48
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, A B C ^ = 60 ° SO vuông góc với đáy, M là điểm thay đổi trên cạnh AB. Mặt phẳng (SMO) cắt cạnh CD tại điểm N. Khi chu vi tam giác SMN nhỏ nhất thì tỉ số AM/AB bằng
A. 1 4
B. 1 2
C. 2 3
D. 3 4
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, góc ABC bằng 60 o . Cạnh bên SA vuông góc với mặt phẳng đáy (ABCD), góc giữa SO và mặt phẳng (ABCD) bằng 45 o . Biết khoảng cách từ điểm A đến (SCD) bằng a 6 4 . Tính độ dài AB.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc B A D = 60 ° , có SO vuông góc với mặt phẳng (ABCD) và SO = a Khoảng cách từ O đến mặt phẳng (SBC) là:
A. a 57 19
B. a 57 18
C. a 45 7
D. a 52 16
Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, A B C ^ = 60 ° , SA vuông góc với (ABCD) S A = 3 a 2 . Gọi O là tâm của hình thoi ABCD. Khoảng cách từ điểm O đến (SBC) bằng:
A. 3 a 4
B. 3 a 8
C. 5 a 8
D. 5 a 4