Những câu hỏi liên quan
ND
Xem chi tiết
NH
Xem chi tiết
CM
Xem chi tiết
NX
Xem chi tiết
TV
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
PK
31 tháng 12 2015 lúc 8:27

Giả sử a ≤ b ≤ c

⇒ ab + bc + ca ≤ 3bc.

Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc

⇒a<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bc

⇒bc<2(b+c) (2)

Vì b ≤ c⇒ bc < 4c ⇒ b < 4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Bình luận (0)
OO
31 tháng 12 2015 lúc 8:30

Phạm Tuấn Kiệt coppy

Bình luận (0)
LN
Xem chi tiết
PK
31 tháng 12 2015 lúc 8:29

Giả sử a ≤ b ≤ c

⇒ ab + bc + ca ≤ 3bc.

Theo giả thiết abc < ab+ bc + ca (1) nên abc < 3bc

⇒a<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bc

⇒bc<2(b+c) (2)

Vì b ≤ c⇒ bc < 4c ⇒ b < 4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Bình luận (0)
OO
31 tháng 12 2015 lúc 8:30

Phạm Tuấn Kiệt copy

 

Bình luận (0)
LT
31 tháng 12 2015 lúc 8:32

Giả sử abcab+bc+ca3bc.

Theo giả thiết abc<ab+bc+ca (1)

nên abc<3bca<3 mà a là số nguyên tố nên a = 2.

Thay a = 2 vào (1) được 2bc<2b+2c+bcbc<2(b+c) (2)

Vì bcbc<4cb<4.

Vì b là số nguyên tố nên b = 2 hoặc b = 3.

Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý.

Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy 

Bình luận (0)
PA
Xem chi tiết