So sánh A với 1 biết:
A= 1/9+1/10+1/11+1/12+....+1/32
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh
a, A= 10^11-1/10^12-1 và B= 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
c, M = 101^102+1/101^103+1 và N = 101^103+1/101^104+1
d, C= 1/31+1/32+...+1/60 và 4/5
So sánh phân số \(\dfrac{2012}{2013}\) với A, biết:
A = \(\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{13}\) + \(\dfrac{1}{14}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{38}\) + \(\dfrac{1}{39}\) + \(\dfrac{1}{40}\)
Ai xong đầu tiên mình tick nhé.
So sánh:
a) 1/31+1/32+...+1/60 và 1/2
b) 1/11+1/12+...+1/20 và 1/2
c) 1/10+1/11+...+1/99+1/100 và 1
cho A = 10^11-1/ 10^12-1; B= 10^10 +1/ 10^11+1.
so sánh A với B
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha
So sánh
a, A= 10^11-1/10^12-1 và B = 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
so sánh:
a) n+1/n+2 với n/n+3
b) 10^11-1/10^12-1 với 10^10+1/10^11+1
a) Ta có
A = n / n+1 = 1-(1/n+1)
A = n+2 / n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> n/n+1 < n+2/n+3
=> A<B
A=5/9+(-5/7)+(-20/48)+8/12+(-21/48)
B=(-5/9)+8/15+(-2/11)+(4/-9)+2/45
S=1/11+1/12+1/13+....+1/20
hãy so sánh S với 1/2
so sánh a và b:
A=10^11-1/10^12-1 và B=10^10+1/10^11+1
\(A=\dfrac{10^{11}+1}{10^{12}-1}\)
\(\Rightarrow10A=\dfrac{10^{11}+1}{10^{12}-1}.10\)
\(\Rightarrow10A=\dfrac{10\left(10^{11}+1\right)}{10^{12}-1}\)
\(\Rightarrow10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10B=\dfrac{10^{10}+1}{10^{11}+1}.10\)
\(\Rightarrow10B=\dfrac{\left(10^{10}+1\right).10}{10^{11}+1}\)
\(\Rightarrow10B=\dfrac{10^{11}+10}{10^{11}+1}\)
Ta thấy:
\(10^{12}-1>10^{12}-10>0\Rightarrow10A< 1\)
\(0< 10^{11}+1< 10^{11}+10\Rightarrow10B>1\)
Mà \(10A< 1;10B>1\)
\(\Rightarrow B>A\).
Bạn tham khảo cách giải này ạ:
Nếu có 1 phân số \(\dfrac{a}{b}\) < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (1011 -1)+11/(1012-1)+10
A < 1011+10/1012+10
A < 10(1010+1)/10(1011+1)
A < 10(1010+1)/10(1011+1)
A < 1010+1/1011+1
Vậy A< B ( đcpcm )