1.Chứng minh rằng :
a) Nếu n là tổng 2 số chính phương thì 2n cũng là tổng 2 số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Chứng minh rằng :
a) Nếu n là tổng 2 số chính phương thì 2n cũng là tổng 2 số chính phương
1.Chứng minh rằng :
a) Nếu n là tổng 2 số chính phương thì 2n cũng là tổng 2 số chính phương
Ta có:
Vì n là tổng của 2 số chính phương
=> đặt n = a2 + b2
=> 2n = (a2 + b2) + (a2 + b2)
=> 2n = (a2 + a2) + (b2 + b2)
=> 2n = 2a2 + 2b2 là tổng của 2 số chính phương (ĐPCM)
Vậy...
đặt n=a2+b2=> 2n= a2+2ab+b2+a2-2ab+b2=(a+b)2+(a-b)2=> đfcm
1) Chứng minh rằng :
a) Nếu n là tổng hai số chính phương thì 2n cũng là tổng hai số chính phương
b) Nếu 2n là tổng của hai số chính phương thì n cũng là tổng hai số chính phương
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
.Chứng minh rằng :
a) Nếu n là tổng 2 số chính phương thì 2n cũng là tổng 2 số chính phương
Chứng minh rằng
a)Nếu số n là tổng của hai số chính phương thì 2n cũng là tổng của hai số chính phương
b)Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
c)Nếu số n là tổng của hai số chính phương thì n2 cũng là tổng của hai số chính phương
d)Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
chứng minh rằng nếu n là tổng của 2 số chính phương thì 2n cũng là tổng của 2 số chính phương
c/m rằng;
a) n là tổng hai số chính phương thì 2n cũng là tổng hai số chính phương
b) 2n là tổng hai số chính phương thì n cũng là tổng hai số chính phương
c) nếu n là tổng hai số chính phương thì n^2 cũng là tổng hai số chính phương
d) nếu mỗi số m;n là tổng hai số chính phương thì tích m;n cũng là tổng hai số chính phương
a) Gọi n = a^2 + b^2
Suy ra 2n = 2a^2 +2b^2 = a^2 + 2ab + b^2 + a^2 -2ab +b^2
= (a + b)^2 + (a-b)^2
b) Mình chưa suy nghĩ ra
c) n^2 = (a^2 +b^2 )^2 = a^4 +2a^2.b^2 + b^4 = a^4 - 2a^2.b^2 + b^4 +4a^2.b^2
= (a^2 - b^2)^2 + (2.a.b)^2
d)m.n = (a^2 + b^2)(c^2 + d^2) = a^2.c^2 + a^2.d^2 + b^2.c^2 + b^2.d^2
= (a^2.c^2 + 2a^2.b^2.c^2.d^2 + b^2.d^2) + (a^2.d^2 - 2a^2.b^2.c^2.d^2 + b^2.c^2)
= (ac + bd)^2 + (ad + bc)^2
Chọn câu A vì có 16 lp hc, vậy 16 đv điều tra. ứng vs mỗi đv đk điều tra sẽ có 1 giá trị, dó đó sẽ có 16 giá trị của dấu hiệu.
k cho mk nha mk tl đầu tiên và đúng lém ai ik quá thấy đúng k nốt cho mk nha mk c ơn
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Giả sử \(2n=a^2+b^2\)(a,b∈N).
⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)
Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.
⇒ \(\dfrac{a+b}{2}\) và \(\dfrac{a-b}{2}\) đều là số nguyên
Chứng minh: Nếu n là tổng của hai số chính phương thì 2n và n2 cũng là tổng của hai số chính phương
Cho (a + b + c)2 = 3(a2 + b2 + c2). Chứng minh a = b = c
Cho (a + b + c)2 = 3(a2 + b2 + c2). Chứng minh a = b = c
a) Ta gọi 2 số chính phương đó là: a2 và b2
Khi ta có : N = a2 + b2
=> 2N = 2.(a2 + b2) = (a - b)2 + (a + b)2