Tập hợp các giá trị nguyên của x để biểu thức M=|x-\(\frac{5}{4}\)|+ |x+2| đạt giá trị nhỏ nhất
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tập hợp các giá trị nguyên của x để biểu thức M = \(\left|x-\frac{5}{4}\right|+\left|x+2\right|\) đạt giá trị nhỏ nhất là {..........}
Tập hợp các giá trị nguyên của x để biểu thức \(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|\) đạt giá trị nhỏ nhất là ?
x lớn hơn hoặc bằng -2 và x nhỏ hơn hoặc bằng 5/4.
x nguyên nên x thuộc {-2;-1;0;1}
)\(Tập hợp các giá trị nguyên của x để biểu thức M= l x-$\frac{5}{4}$54 l + lx+2l đạt giá trị nhỏ nhất là ? \)
Tập hợp các giá trị nguyên của x để biểu thức M= l x-\(\frac{5}{4}\) l + lx+2l đạt giá trị nhỏ nhất là ?
\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)
Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với \(xy\ge0\) ta có:
\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Lập bảng xét dấu:
x | -2 5/4 |
5/4-x | + | + 0 - |
x+2 | - 0 + | + |
(5/4-x)(x+2) | - 0 + 0 - |
Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)
Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Mmin=13/4 khi \(x\in\left\{-1;0;1\right\}\)
mình làm sai rồi nhé bạn
là dấu "=" xảy ra khi xy>=0
thật sự xin lỗi
Tập hợp các giá trị nguyên của x để biểu thức M = |x - 5/4| + |x + 2| đạt giá trị nhỏ nhất
Giải giúp mình với, có lời giải càng tốt, hay mình sẽ tick nhé!
Tập hợp các giá trị nguyên của x để M = \(|x-\left\{\frac{5}{4}\right\}|+|x+2|\)
đạt giá trị nhỏ nhất
Số x nguyên để biểu thức D = |x + 1,5| + | x - 2| đạt giá trị nhỏ nhất. Viết tập hợp các giá trị của x
Số x nguyên tố để biểu thức D = |x + 1,5| + |x - 2| đạt gái trị nhỏ nhất. Viết tập hợp các giá trị của x
tập hợp các số nguyên x để biểu thức A = | x + 2 | + | 1 - x | đạt giá trị nhỏ nhất .
Gọi tập hợp các số cần tìm là B.
B={0;1;2}