Cho hình lăng trụ A B C . A ' B ' C ' có thể tích bằng a 3 . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC . Tính thể tích V của khối tứ diện GMNP.
Cho hình lăng trụ đứng ABCD.A'B'C'D’ có đáy là hình thoi cạnh 3 cm, A B C ^ = 60 ° và chiều cao bằng 5 cm.
a) Tính diện tích xung quanh lăng trụ.
b) Tính diện tích toàn phần lăng trụ.
c) Tính thể tích lăng trụ.
Cho hình lăng trụ ngũ giác ABCD.A'B'C'D'. Gọi A'', B'', C'', D'', E'' lần lượt là trung điểm của các cạnh AA', BB', CC', DD', EE'. Tỉ số thể tích giữa khối lăng trụ ABCDE.A''B''C''D''E'' và khối lăng trụ ABCDE.A'B'C'D' bằng:
A. 1/2 B. 1/4
C. 1/8 D. 1/10.
Chọn A.
Để ý rằng hai khối lăng trụ đó có diện tích đáy bằng nhau, tỉ số hai đường cao tương ứng bằng 1/2.
a.1/2
okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Cho hình chóp tam giác đều SABC có các cạnh đều bằng a.
a. Tính diện tích xung quanh hình lăng trụ.
b. Tính diện tích toàn phần hình lăng trụ.
c. Tính thể tích hình lăng trụ.
Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
Cho khối lăng trụ có diện tích đáy bằng \({a^2}\) và chiều cao bằng \(3a\). Thể tích của khối lăng trụ đó bằng:
A. \({a^3}\).
B. \(3{a^3}\).
C. \(\frac{{{a^3}}}{3}\).
D. \(9{a^3}\).
Thể tích:\(V=a^2.3a=3a^3\)
\(\Rightarrow B\)
Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy là hình vuông cạnh bằng 4cm, đường chéo AB′ của mặt bên (ABB′A′) có độ dài bằng 5cm. Tính thể tích V của khối lăng trụ ABCD.A′B′C′D′.
A. 48 cm 3
B. 24 cm 3
C. 16 cm 3
D. 32 cm 3
bài 3 : cho lăng trụ đứng ABC . A'B'C' có đáy tam giác ABC vuông tại A , AB=15cm , BC=25cm , A'=12 cm , thể tích của hình lăng trụ đứng ABC.A'B'C' là 1800cm3 . tính diện tích xung quanh của hình lăng trụ đứng ABC.A'B'C'
Cho hình lăng trụ đứng ABC.A' B' C' có đáy là tam giác vuông cân đỉnh A, BC=2a, thể tích khối lăng trụ đã cho bằng a 3 . Khoảng cách từ điểm B' đến mặt phẳng (A' BC) bằng
A. 2 a B. 6 a 4 . C. 2 a 2 . D. 6 a 3
B. 6 a 4 .
C. 2 a 2 .
Cho hình lăng trụ đứng ABC.A′B′C′ có BB'=a và đáy là tam giác vuông cân tại B và AC= a 2 . Thể tích của khối lăng trụ đã cho bằng
A. 1 3 a 3
B. a 3
C. 1 2 a 3
D. 1 6 a 3
cho khối lăng trụ ABC.A'B'C' . Gọi M,N,H lần lượt là trung điểm của AB',BC',CA'. Biết khối đa diện có sáu đỉnh A,B,C,M,N,H có thể tích bằng V0. Khi đó thể tích V của khối lăng trụ đã cho bằng