Những câu hỏi liên quan
PB
Xem chi tiết
CT
13 tháng 3 2017 lúc 8:48

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 5 2019 lúc 18:01

Đáp án D

Phương pháp.Sử dụng giả thiết để tìm được  

Thay vào  và sử dụng yêu cầu bài toán để biện luận và tìm giá trị của  m 0  

Lời giải chi tiết.
Giả sử .
Khi đó ta có

 

Thay vào  Ta nhận được

 

Để có đúng một nghiệm phức thỏa mãn bài toán thì phương trình (1) phải có duy nhất một nghiệm a.

Khi đó phương trình (1) phải thỏa mãn

 

Kết hợp với điều kiện  ta suy ra giá trị cần tìm là  

Sai lầm.Một bộ phận nhỏ học sinh vẫn có thể quên đưa ra điều kiện  nên hai nghiệm là 

 

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 12:07

Để có đúng một nghiệm phức thỏa mãn bài toán thì phương trình (1) phải có duy nhất một nghiệm a. Khi đó phương trình (1) phải thỏa mãn 

Đáp án D

Bình luận (0)
NA
Xem chi tiết
H24
7 tháng 4 2023 lúc 12:44

\(z^2-2\left(2m-1\right)z+m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(z^2_1+z_2^2=2\)

\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)

\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)

\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)

\(\Leftrightarrow14m^2-16m+2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)

Bình luận (0)
NH
10 tháng 4 2023 lúc 16:43

Ta có phương trình bậc hai trên tập số phức:

z^2 - 2(2m-1)z + m^2 = 0

Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:

z1 + z2 = 2(2m-1) và z1z2 = m^2

Từ phương trình z1^2 + z2^2 = 2, ta suy ra:

(z1+z2)^2 - 2z1z2 = 4

Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:

(2(2m-1))^2 - 2m^2 = 4

Đơn giản hóa biểu thức ta có:

m^2 - 4m + 1 = 0

Suy ra:

m = 2 + √3 hoặc m = 2 - √3

Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.

Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 7 2019 lúc 13:43

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 11 2019 lúc 13:21

Đặt z=x+yi ta có hệ đều kiện:

Ta có (1) là tập hợp các cạnh của hình vuông ABCD có tâm là gốc toạ độ độ dài cạnh bằng a = m 2 2 ; là đường tròn (C) có tâm là gốc toạ độ O bán kính bằng R = m.

Để có đúng 8 số phức thoả mãn thì (C) phải nằm giữa đường tròn ngoại tiếp và đường tròn nội tiếp hình vuông 

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 7 2017 lúc 18:24

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 10 2018 lúc 16:55

Đáp án B

Ta có:

 

Tập hợp điểm M biểu diễn w là trung trực của  nên là đường thẳng d qua trung điểm I(m-1;2) và có n → ( 4 ; - 2 )

Đặt 

Do  ω ⩾ 2 5 nên M nằm ngoài đường tròn tâm O bán kính R= 2 5

 

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 3 2017 lúc 16:46

Chọn B.

+ Ta có 

Do đó: 

+ để z là số thuần ảo khi và chỉ khi m = 2k + 1

+  Mà 0 ≤ m ≤ 50 nên   0 ≤ 2k + 1 ≤ 50

Suy ra: -1/2 ≤ k ≤ 24,5

Kết hợp với điều kiện k nguyên nên k  {0;1;2;3...24}

Với 25 giá trị của k cho ta tương ứng 25 giá trị m thỏa yêu cầu đề bài.

Bình luận (0)