Trong không gian Oxyz, viết phương trình mặt phẳng (α) đi qua điểm A ( 1 ; 2 ; - 2 ) , B ( 2 ; - 1 ; 4 ) và vuông góc với ( β ) : x - 2 y - z + 1 = 0 .
A. 15x + 7y + z – 27 = 0
B. 15x – 7y + z + 1 = 0
C. 15x – 7y – z + 1 = 0
D. Đáp án khác
Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng α đi qua điểm A 1 ; 2 ; - 1 sao cho khoảng cách từ B 1 ; 0 ; 0 đến mặt phẳng α lớn nhất.
A. 2 y + z - 3 = 0
B. 2 y - z = 0
C. 2 y - z - 5 = 0
D. x + 2 y - z - 6 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm M 1 ; 0 ; 6 và mặt phẳng α có phương trình là x + 2 y + 2 z − 1 = 0 . Viết phương trình mặt phẳng β đi qua M và song song với α
A. β : x + 2 y + 2 z + 13 = 0.
B. β : x + 2 y + 2 z − 15 = 0.
C. β : x + 2 y + 2 z − 13 = 0.
D. β : x + 2 y + 2 z + 15 = 0.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng α : x − 4 y + z = 0 . Viết phương trình mặt phẳng β đi qua A và song song với mặt phẳng α .
A. x − 4 y + z − 4 = 0
B. x − 4 y + z + 4 = 0
C. 2 x + y + 2 z − 10 = 0
D. 2 x + y + 2 z + 10 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 2 ; 3 và mặt phẳng α : x − 4 y + z = 0 . Viết phương trình mặt phẳng β đi qua A và song song với mặt phẳng α .
A. x − 4 y + z − 4 = 0
B. x − 4 y + z + 4 = 0
C. 2 x + y + 2 z − 10 = 0
D. 2 x + y + 2 z + 10 = 0
Đáp án B.
Vì β song song với α nên loại đáp án C và D.
Thử trực tiếp thấy điểm A 1 ; 2 ; 3 thuộc mặt phẳng x − 4 y + z + 4 = 0 .
Do đó đáp án đúng là B.
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Chọn C
Gọi giao điểm của Δ và d là B nên ta có: B (3+t;3+3t;2t)
Vì đường thẳng Δ song song với mặt phẳng (α) nên:
Phương trình đường thẳng Δ đi qua A và nhận
Trong không gian tọa độ Oxyz, cho điểm A(5;4;3). Gọi ( α ) là mặt phẳng đi qua các hình chiếu của A lên các trục tọa độ. Phương trình của mặt phẳng ( α ) là:
A. 12 x + 15 y + 20 z - 10 = 0
B. 12 x + 15 y + 20 z + 60 = 0
C. x 5 + y 4 + z 3 = 1
D. x 5 + y 4 + z 3 - 60 = 0
Đáp án C
Gợi A’, B’ C’ hình chiếu của A lên Ox, Oy, Oz. Ta có:
A'(5;0;0), B'(0;4;0), C(0;0;3) => PT ( α ) : x 5 + y 4 + z 3 = 1
Trong không gian Oxyz, cho điểm N 1 ; 0 ; − 1 . Mặt phẳng α đi qua M và chứa trục Ox có phương trình là ?
A. x + z = 0.
B. y + z + 1 = 0.
C. y = 0.
D. x + y + z = 0.
Đáp án C.
Mặt phẳng α nhận O M → ; u Ox → là một VTPT.
Mà O M → = 1 ; 0 ; − 1 u O x → = 1 ; 0 ; 0
⇒ O M → ; u Ox → = 0 ; − 1 ; 0 .
Kết hợp với α đi qua M(1;0;-1)
⇒ α : − y − 0 = 0 ⇔ y = 0.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm G 1 ; 2 ; 3 . Mặt phẳng α đi qua G cắt Ox,Oy,Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. Viết phương trình mặt phẳng α .
A. α : x 3 + y 6 + z 9 = 1
B. α : x 2 + y 4 + z 6 = 1
C. α : x 3 + y 2 + z 1 = 1
D. α : x 1 + y 2 + z 3 = 1