Những câu hỏi liên quan
PB
Xem chi tiết
CT
20 tháng 10 2018 lúc 15:43

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 5 2018 lúc 6:16

Đáp án D

Phương pháp:

+) Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) = 0

+) Xác định dấu của h(0); h(1); h(-1) và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y = |h(x)| và kết luận.

Cách giải:

Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017,

 

với a > 0, c > 2017, a + b + c < 2017 nên b < 0

Ta có: h(0) = c - 2017 > 0, h(-1) = h(1) = a + b + c - 2017 < 0

⇒ h(0).(h-1) < 0, h(0).h⁡(1) < 0

⇒ ∃ x1, x2: x1 ∈ (-1;0), x2 ∈ (0;1) mà h(x1) = h(x2) = 0

Do đó, đồ thị hàm số y = h(x) và y = |h(x)| dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y = |f(x) - 2017| là 7

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 4 2018 lúc 6:25

Đáp án D.

Xét hàm số g ( x ) = f ( x ) - 2017 = a x 4 + b x 2 + c - 2017  là hàm trùng phương nên đồ thị hàm số nhận trục Oy làm trục đối xứng và luôn nhận x = 0  là một điểm cực trị.

Ta có g ( 0 ) = c - 2017 > 0   ( d o   x > 2017 ) g ( 1 ) = a + b + c - 2107 < 0   ( d o   a + b + c < 2017 ) ⇒ g ( 0 ) . g ( 1 ) < 0 ⇒  phương trình g ( x ) = 0  có nghiệm ( 0 ; 1 ) .

Lại có lim x → + ∞ g ( x ) = lim x → + ∞ = x 4 a + b x 2 + c - 2017 x 4 = + ∞   ( d o   a > 0 )  nên tồn tại x = x 0  đủ lớn ( x 0 → + ∞ )  sao cho g ( x 0 ) > 0 ⇒ g ( 1 ) . g ( x 0 < 0 ⇒ )  phương trình g ( x ) = 0  có nghiệm trên 1 ; + ∞ .

Như vậy, với x > 0 thì phương trình g (x) =0 có ít nhất hai nghiệm nên đồ thị hàm số g (x) cắt Ox tại ít nhất hai điểm nằm bên phải trục tung. Suy ra phương trình g (x) có đúng 4 nghiệm hay đồ thị hàm số  g(x) cắt Ox tại đúng  4 điểm và có đồ thị như hình bên. Suy ra hàm số y = g(x) có 3 điểm cực trị (1 cực đại, 2 cực tiểu).

 

Khi đó hàm số y = g ( x )  có 3 + 4 = 7  điểm cực trị.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2019 lúc 16:12

Đáp án D

Dựa vào 2 dạng của đồ thị hàm số bậc 4 trùng phương khi a > 0

Suy ra hàm số y = f(x) có 3 điểm cực trị và PT: f(x) - 2017 có 4 nghiệm phân biệt

Như vậy PT  y ' = 2 f x − 2017 . f ' x 2 f x − 2017 2 = 0  có 7 nghiệm phân biệt do đó hàm số có 7 cực trị.

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 7 2017 lúc 17:02

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 7 2017 lúc 15:34

Đáp án B

Ta có  y , = 0 ⇔ x = 1 x = - 2 x = 3  ,  y ,  đổi dấu qua x=1 và x=-2 , y ,  không đổi dấu qua x=3 nên hàm số có hai cực trị tại x=1 và x=-2

 

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 1 2017 lúc 9:57

Đáp án B.

Ta có: Tập xác định của hàm số  y = x 2 3 + 2017  là R nên  y ' = 2 3 x 3

Ta có bảng biến thiên

(I) sai vì hàm số chỉ đồng biến trên  0 ; + ∞ ;

(II) đúng là hàm số đạt cực tiểu x = 0; EM NHÌN KĨ BẢNG BIẾN THIÊN NHÉ!

(III) sai vì giá trị nhỏ nhất của hàm số là 2017

(IV) sai vì hàm số nghịch biến trên  − ∞ ; 0

Lỗi sai

Ø  Có bạn sẽ nhìn nhanh và nhầm  y ' = 2 3 x 3 > 0  và kết luận là I đúng

Ø  Có bạn sẽ không xét tại x = 0 vì tại đó y' không xác định. Hàm số vẫn đạt cực tiểu tại x = 0. Ta xét các điểm cực trị làm y' = 0 hoặc y' không xác định.

 

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 11 2018 lúc 15:25

Chọn đáp án B.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2019 lúc 6:17

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 6 2019 lúc 14:02

Dựa vào đồ thị hàm số y= f’(x)  suy ra phương trình f’( x- 2017) = 2018  có 1 nghiệm đơn duy nhất. 

 

Suy ra hàm số y= g( x)  có 1 điểm cực trị

Bình luận (0)