Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
SK
Xem chi tiết
LH
20 tháng 6 2017 lúc 20:55
Kẻ đường cao BH (H thuộc CD). Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau). Suy ra BH = AB = 2 Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều. Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\) Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\)
Bình luận (0)
NH
29 tháng 6 2017 lúc 11:34

Hình thang

Bình luận (0)
MV
2 tháng 7 2018 lúc 16:52

Giải sách bà i tập Toán 8 | Giải bà i tập Sách bà i tập Toán 8

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD (gt)

Suy ra: BH // AD

Hình thang ABHG có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ΔBHC vuông cân tại H ⇒ \(\widehat{C}=45^0\)

\(\widehat{B}+\widehat{C}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{B}=180^0-45^0=135^0\)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 5 2018 lúc 18:23

Đáp án cần chọn là: D

Từ B kẻ BH vuông góc với CD.

Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.

Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.

Do đó: HC = DC – HD = 4 – 2 = 2cm.

Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.

Lại có B H C ^ = 90 °  (do BH CD) nên tam giác BHC vuông cân tại H.

Do đó  B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °

Xét hình thang ABCD có:

A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °

Vậy A B C ^ = 135 ° .

Bình luận (0)
LP
Xem chi tiết
DD
10 tháng 8 2016 lúc 13:33

diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2

Bình luận (0)
DD
10 tháng 8 2016 lúc 13:36

\(\frac{1}{2}\)x2(2+4)=6(cm^2(

Bình luận (0)
KS
1 tháng 9 2016 lúc 13:01

Lấy K là trung điểm của CD , I là trung điểm của DN

Chứng minh tứ giác ABKD là hình vuông

=> ˆADB=45o(1)ADB^=45o(1)

Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)

Từ (1) và (2) ta được ˆABC=135oABC^=135o

Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)

lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)

Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)

+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)

Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o

=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o

=>MI⊥ DN=>MI⊥ DN

Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân

Bình luận (0)
HL
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết
H24
11 tháng 9 2021 lúc 21:00

Kẻ BH ⊥ CD

Ta có: AD ⊥ CD ( Vì ABCD là hình thang vuông có  ∠ A =  ∠ D = 90 0  )

Suy ra: BH // AD

Hình thang ABHD có hai cạnh bên song song nên HD = AB và BH = AD

AB = AD = 2cm (gt)

⇒ BH = HD = 2cm

CH = CD – HD = 4 – 2 = 2 (cm)

Suy ra: ∆ BHC vuông cân tại H

Hình đây ạ !!:

undefined

Bình luận (1)
 Khách vãng lai đã xóa
NK
Xem chi tiết
CH
21 tháng 5 2018 lúc 11:25

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

Bình luận (0)
BT
21 tháng 5 2018 lúc 12:16

20cm2

Bình luận (0)