Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 12 2017 lúc 15:58

Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên khoảng (− ∞ ;+ ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có min f(x) = −1/4; max f(x) = 1/4

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 5 2019 lúc 12:23

Giải sách bài tập Toán 12 | Giải sbt Toán 12 trên khoảng Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = 0 ⇔ x = π

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số không có giá trị nhỏ nhất. Giá trị lớn nhất của hàm số là: max y = y( π ) = −1

Bình luận (0)
H24
Xem chi tiết
AH
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Bình luận (0)
AH
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Bình luận (0)
AH
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 3 2017 lúc 4:55

min f(x) = f(1) = 4. Không có giá trị lớn nhất.

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 3 2018 lúc 1:55

Đáp án là A

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 2 2019 lúc 16:42

min f(x) = f( 2 ) = −3; max f(x) = f(2) = f(0) = 1

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 2 2017 lúc 7:09

Xét hàm số f(x) =  x 3  + 3 x 2  − 72x + 90 trên đoạn [-5;5]

f′(x) =3 x 2  + 6x − 72;

f′(x) = 0 Giải sách bài tập Toán 12 | Giải sbt Toán 12

f(−5) = 400; f(5) = −70; f(4) = −86

Ngoài ra, f(x) liên tục trên đoạn [-5;5] và f(−5).f(5) < 0 nên tồn tại x 0   ∈ (−5;5) sao cho f( x 0 ) = 0

Ta có g(x) = |f(x)| ≤ 0 và g( x 0 ) = |f( x 0 )| = 0;

g(−5) = |400| = 400

g(5) = |−70| = 70; g(4) = |f(4)| = |−86| = 86

Vậy min g(x) = g( x 0 ) = 0; max g(x) = g(−5) = 400

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2017 lúc 14:43

Giải bài 8 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2017 lúc 15:36

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f CĐ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)