Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau: d đi qua hai điểm P(1; 2; 3) và Q(5; 4; 4).
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
∆ đi qua hai điểm C và D nên có vecto chỉ phương CD → = (1; 2; 3)
Vậy phương trình tham số của ∆ là
Phương trình chính tắc của ∆ là:
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau: d đi qua M(5; 4; 1) và có vectơ chỉ phương a → = 2 ; - 3 ; 1
Ta có: x = 5 + 2 t y = 4 - 3 t z = 1 + t
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau: d đi qua B(2; 0; -3) và song song với đường thẳng ∆ : x = 1 + 2 t y = - 3 + 3 t z = 4 t
Vecto chỉ phương của đường thẳng d là a = (2;3;4) (vì d// ∆ )
Vậy pt tham số của đường thẳng d là: x = 2 + 2 t y = - 3 t z = - 3 + 4 t
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau: d đi qua A(2; -1; 3) và vuông góc với mặt phẳng (α): x + y – z + 5 = 0.
Đường thẳng d vuông góc với mp α x+y-z+5=0 nên đường thẳng d có vecto chỉ phương n → = 1 ; 1 ; - 1
Vậy pt tham số của đường thẳng d là: x = 2 + t y = - 1 + t z = 3 - t
Lập phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a)d đi qua điểm M(2;1)và có vecto chỉ phương u
→=(3;4)
b)d đi qua điểm M(-2;3)và có vecto chỉ phương n
→=(5;1)
Viết phương trình tổng quát, tham số, chính tắc (nếu có) của đường thẳng delta trong mỗi trường hợp sau:
a, Delta đi qua điểm A( 3;0 ), B( -1;0 )
b, Delta đi qua M( 1;2 ) và vuông góc với đường thẳng d: x - 3y - 1= 0
Lập phương trình tham số của đường thằng d trong mỗi trường hợp sau:
a) d đi qua điểm M(2; 1) và có vec tơ chỉ phương ;
b) d đi qua điểm M(–2; 3) và có vec tơ pháp tuyến
a) Phương trình tham số của d là:
b) d nhận là 1 vec tơ pháp tuyến
⇒ d nhận là 1 vec tơ chỉ phương
Phương trình tham số của đường thẳng d là:
Lập phương trình tham số và phương trình tổng quát của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u = (2;1)\)
b) d đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến là \(\overrightarrow n = (3; - 2)\)
c) d đi qua \(P(1;1)\) và có hệ số góc \(k = - 2\)
d) d đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\)
a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\), nên có phương trình tham số là:
\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 5 + t\end{array} \right.\)
Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)
Ta có phương trình tổng quát là
\((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)
b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :
\(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 2 + 3t\end{array} \right.\)
Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2} \right)\)
Phương trình tổng quát của đường thẳng d là:
\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)
c) Đường thẳng \(d\) có dạng \(y = ax + b\)
d đi qua \(P(1;1)\) và có hệ số góc \(k = - 2\) nên ta có:
\(1 = - 2.1 + b \Rightarrow b = 3\)
Suy ra đồ thị đường thẳng d có dạng \(y = - 2x + 3\)
Vậy đường thẳng d có phương trình tổng quát là \(y + 2x - 3 = 0\)
Suy ra đường thẳng d có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của d là :
\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)
d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u = \overrightarrow {QR} = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n = (2;3)\)
Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)
Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) = \Leftrightarrow 2x + 3y - 6 = 0\)
Lập phương trình tổng quát và phương trình tham số của đường thẳng d trong mỗi trường hợp sau:
a) d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\)
b) d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\)
c) d đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\)
a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)
Do vecto pháp tuyến là \(\overrightarrow n = (2; - \;3) \Rightarrow \overrightarrow u = (3;2)\)
Từ đó ta có phương trình tham số của đường thẳng d là:
\(\left\{ \begin{array}{l}x = - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)
b) Phương trình tham số của đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x = - 2 - 7t\\y = - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).
Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).
c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)
Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .