Các bạn giúp mình nhé :
Chứng minh rằng 4a2+4a chia hết cho 8 với mọi a thuộc Z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
bài 1 : chứng tỏ rằng P=4a2+4a chia hết cho 8
bài 2 : tìm a thuộc Z sao cho Q=a+7 chia hết cho a (a không bằng 0)
bài 3 : tìm a thuộc Z sao cho S=a+1 chia hết cho a-2 ( a không bằng 2)
Bạn nào giải được bài nào ( 1 bài cũng được ) thì giúp mình nhé!
Nhờ các bạn viết chi tiết lời giải giúp mình luôn nhé!
Bài 2:Ta có:\(a+7⋮a\)
\(\Rightarrow7⋮a\)
\(\Rightarrow a\inƯ\left(7\right)\)
\(Ư\left(7\right)=1;-1;7;-7\)
Suy ra \(a\in1;-1;7;-7\)
bà 3:\(a+1⋮a-2\)
\(a-2+3⋮a-2\)
\(3⋮a-2\)
\(\Rightarrow a-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=1;3\);-1;-3
Suy ra:\(a\in3;5;1;-1.\)
Giúp mình câu này nhé. Chứng minh rằng n(n+1)(n+8) chia hết cho 6 với mọi n € Z
Ta có : n^3 - n (n € Z )
= n(n^2 -1)
=n(n-1)(n+1)
=(n-1)n(n+1)
mà n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và một số chia hết cho 3
=> (n-1)n(n+1) chia hết cho 2 và 3
=> (n-1)n(n+1) chia hết cho 2.3
=> (n-1)n(n+1) chia hết cho 6 (đpcm)
Chứng tỏ rằng:
P= 4a2 + 4a chia hết cho 8 với mọi a thuộc Z
P = 4a2 + 4a = 4(a + a2)
Bây giờ chỉ còn CM a + a2 chia hết cho 2
a + a2 = a(a+ 1) chia hết cho 2
=> ĐPCM
Chứng minh rằng nếu 6x + 11y chia hết cho 31 với mọi x, y thuộc z thì x + 7y cũng chia hết cho 31.
giúp mình 3 câu ấy nhé!
Ta có 6x+11y chia hết cho 31
<=>6x+(11y+31y) chia hết cho 31( 31y chia hết cho 31)
<=>6x+42y chia hết cho 31
<=>6.(x+7y) chia hết cho 31
Ta có (6;31)=1
=> x+7y chia hết cho 31(đpcm)
a, Chứng minh rằng với mọi m thuộc Z ta luôn có m3 - m chia hết cho 6 .
b, Chứng minh rằng với mọi n thuộc Z ta luôn có ( 2n - 1 ) - 2n + 1 chia hết cho 8
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
công thanh sai rồi số nguyên chứ đâu phải số tự nhiên
Các bạn ơi giúp mình giải bài toán này nhé !
P/s: Nhớ giải chi tiết giùm mình nhé (Thanks!!!!)
a) chứng minh rằng với mọi số nguyên n thì :(n^2-3n+1)(n+2)-n^3+2 chia hết cho 5
b) chứng minh rằng với mọi số nguyên n thì: (6n+1)(n+5)-(3n+5)(2n-10) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!
Với a,b thuộc Z. Chứng minh
1. 4a-3b chia hết 19 <=> 5a+b chia hết 19
2. 4a+3b chia hết 13 <=> 7a+2b chia hết 13
Các bạn giúp tớ nha
1/
4a-3b chaia hết cho 19 => 6(4a-3b)=24a-18b chia hết cho 19
24a-18b-(5a+b)=19a-19b=19(a-b) chia hết cho 19 mà 24a-18b chia hết cho 19 nên 5a+b chia hết cho 19
2/
4a+3b chia hết cho 13 => 5(4a+3b)=20a+15b chia hết cho 13
20a+15b-(7a+2b)=13a+13b=13(a+b) chia hết cho 13 mà 20a+15b chia hết cho 13 nến 7a+2b cũng chia hết cho 13
Chứng minh rằng
(2n+1)^3-2n+1 chia hết cho 8 với mọi n thuộc Z
Giúp với mọi người minh cần gấp
ta có
\(\left(2n-1\right)^3-2n-1\)
\(=2n.\left(2n-2\right).\left(2n-2\right)\)
\(=8n.\left(n-1\right)^2⋮8\)
\(\left(2n+1\right)^3-(2n+1)\)
\(=\left(2n-2\right)\left(2n-2\right)2n\)
\(=8n\left(n-1\right)^2⋮8\)
bài 1: Biết tích 3 số nguyên x,y,z = -10. Nếu thêm 3 vào x thì tích giảm 6 đơn vị. Tìm x,y,z.
bài 2: chứng tỏ rằng P=4a2+4a chia hết cho 8
Bạn nào giải được bài nào ( 1 bài cũng được ) thì giuos mình nhé!
Nhờ các bạn viết chi tiết lời giải giúp mình nhé!!!!!!!Cảm ơn!!!
b2
P=4a^2 + 4a =4(a^2 + a)=4.[a.a + a]=4[a.(a+1)]
Mà a và a+1 là 2 số nguyên liên tiếp nên tích 2 số này chia hết cho 2
Đặt a(a+1)=2.k ( k thuộc Z)
Suy ra: P=4.2k=8k chia hết cho 8
k ch mình nha