Những câu hỏi liên quan
CA
Xem chi tiết
H24
Xem chi tiết
DH
18 tháng 7 2017 lúc 12:18

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

Bình luận (0)
H24
Xem chi tiết
TP
Xem chi tiết
DT
1 tháng 8 2018 lúc 21:33

\(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

Bình luận (0)
KT
1 tháng 8 2018 lúc 21:33

\(\left(a+b\right)^2\ge4ab\)

<=>  \(a^2+2ab+b^2\ge4ab\)

<=>  \(a^2+2ab+b^2-4ab\ge0\)

<=>  \(a^2-2ab+b^2\ge0\)

<=>  \(\left(a-b\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra <=> a=b

Bình luận (0)
NT
1 tháng 8 2018 lúc 21:33

Mình không biết làm.

Bình luận (0)
NQ
Xem chi tiết
HD
3 tháng 4 2019 lúc 19:17

a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)

vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)

b)\(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0

Bình luận (0)
H24
4 tháng 4 2019 lúc 10:02

b) \(\frac{a}{b}\rightarrow x\).C/m: \(x+\frac{1}{x}\ge2\)

Có \(\left(\sqrt{x}-\sqrt{\frac{1}{x}}\right)^2\ge0\Rightarrow x-2+\frac{1}{x}\ge0\Rightarrow x+\frac{1}{x}\ge2\) (đpcm)

Bình luận (0)
H24
20 tháng 4 2019 lúc 8:00

Tth m phải ns thêm lak vs x>0 x=-1 thì 

Bình luận (0)
NL
Xem chi tiết
ON
9 tháng 3 2019 lúc 19:15

a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0

Bình luận (0)
OM
10 tháng 3 2019 lúc 8:38

Bài toán của bạn đưa về giải bất đẳng thức 
a^2 + b^2 >= ab 
<=> a^2 + b^2 -ab >= 0 
<=> a^2 - ab + (1/4)b^2 + (3/4)b^2 >= 0 
<=> {a - (1/2)b}^2 + (3/4)b^2 >=0 
{a - (1/2)b}^2 luôn >= 0 
(3/4)b^2 luôn >=0 ==> a^2+b^2 luôn >=0 
* Lưu ý: ab = 2.(1/2).ab 
b^2 = (1/4).b^2 + (3/4).b^2

Bình luận (0)
HA
Xem chi tiết
TB
Xem chi tiết
LH
24 tháng 6 2016 lúc 16:05

Đề sai à, giả sử \(a>1\Rightarrow\frac{a+1}{a}< 2\)

Bình luận (0)
CA
Xem chi tiết
CA
27 tháng 12 2015 lúc 20:14

mik tự hào 2 tiếng thằng ngơ nhưng ko ngơ như cậu nghĩ đâu

Bình luận (0)