tìm số tự nhiên để n^4 -27n^2 +121là số nguyên tố
Cho \(B=n^4-27n^2+121\). Tìm số tự nhiên n để B là số nguyên tố.
Có \(B=n^4-27n^2+121\)
\(=n^4+22n^2+121-49n^2\)
\(=\left(n^2+11\right)^2-\left(7n\right)^2\)
\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)
Vì \(n\in N\)nên \(n^2+7n+11>11\)
Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)
Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)
Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)
Vậy nên \(n^2-7n+11=1\)
\(\Leftrightarrow n^2-7n+10=0\)
\(\Leftrightarrow n^2-2n-5n+10=0\)
\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)
Vậy.............
2) Cho B=n4-27n2+121 . Tìm số tự nhiên n để B là số nguyên tố.
\(B=n^4-27n^2+121\)
\(B=n^4+22n^2+121-49n^2\)
\(B=\left(n^2+11\right)^2-49n^2\)
\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)
Vì n là số tự nhiên => \(n^2+11+7n>11\)
Để B là số nguyên tố
=> \(n^2-7n+11=1\)
\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)
xác định tập hợp P các số tự nhiên n để 27n3-45n2+24n-4 là số nguyên tố
Lời giải:
$A=27n^3-45n^2+24n-4=(3n-2)^2(3n-1)$
Để $A$ là số nguyên tố thì 1 trong 2 thừa số $3n-2$ hoặc $3n-1$ phải là $1$ và số còn lại là số nguyên tố.
Nếu $3n-2=1$ thì $n=1$. Khi đó: $A=1^2.2=2$ là số nguyên tố (tm)
Nếu $3n-1=1$ thì $n=\frac{2}{3}\not\in\mathbb{N}$ (loại)
Vậy $n=1$.
Cho P = n^4 - 27n^2 + 121. Tìm n thuộc N* để P là số nguyên tố.
1. a)
Ta có .
TH1: .
Và . Từ đây ta suy ra .
Khả năng 1. và .
Khả năng 2. . Khi đó .
+ Với thì .
+ Với thì .
Khả năng 3. Khi đó .
+ Với thì .
+ Với thì .
TH2: .
Khi đó ta cũng có .
Tiếp tục giới hạn ta cũng được . Xét 3 khả năng:
Khả năng 1: Với . Và .
Khả năng 2: Với . Ta cũng có: .
+ Với thì .
+ Với thì .
Khả năng 3: Với . Cũng có .
+ Với thì .
+ Với thì .
TH3: . Và .
P/s: Làm một hồi rồi không biết đâu là cái kết quả nữa ???
Tìm x thuộc N để
a,2n^2+27n là số nguyên tố
b,n^212n+11 là số nguyên tố
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Cho \(p=n^4-27n^2+121\). Tìm n\(\inℕ^∗\)để p là số nguyên tố.
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Bài 2 Tìm số tự nhiên k để 31k là số nguyên số
Tìm số tự nhiên n để 17 n là số nguyên tố
Bài 2
Xét k=0 thì 31k=0(loại)
Xét k=1 thì 31k=31(chọn)
Xét k>1 thì 31k có 2 ước trở lên(loại)
Vậy k=1