Chứng minh rằng trong 4 số tự nhiên liên tiếp bao giờ cũng có một số chia hết cho 4
a) Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
b) Chứng minh rằng trong 5 số tự nhiên bất kỳ bao giờ cũng chọn được 2 số có hiệu chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
chứng minh răng trong 4 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 4
Gọi 4 STN liên tiếp đó là n , n+1 , n+2 , n+3
Số tự nhiên n khi chia cho 4 có 1 trong4 số dư sau : 0 ;1;2;3
TH1: n : 4 dư 0 => n chia hết cho 4
TH2 : n : 4 dư 1 => ( n+3 ) chia hết cho 4
TH3: n: 4 dư 2 => ( n + 2 ) chia hết cho 4
TH4: n : 4 dư 3 => ( n+1 ) chia hết cho 4
Vậy trong mọi trường hợp thì trong 4 số tự nhiên liên tiếp : n, n+1 , n+2 , n+3 có 1 số chia hết cho 4
Chứng minh rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4.
Gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3=( a+a+a+a)+(1+2+3)
= ax4+6
Vì ax4 chia hết cho 4 nhưng 6 ko chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
nên xem lại đề
Ta có 4 số tự nhiên liên tiếp:n;n+1;n+2;n+3; nếu n chia hết cho 5 suy ra ĐPCM
nếu n chia 4 dư 1 suy ra n+3 chia hết cho 4
nếu n chia 4 dư 2 suy ra n+2 chia hết cho 4
nếu n chia 4 dư 3 suy ra n+1 chia hết cho 4
Suy ra trong 4 số TN liên tiếp chia hết cho 4
vi trong 4 stn lien tiep se co 1 so chia het cho 4
vi chi can 1 so trong h chia het cho 4 thi h do chia het cho 4
suy ra h do chia het cho 4
1 /
a) chứng tỏ rằng trong ba số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 3 . Hãy phát biểu bài toán tổng quát .
b)
chứng tỏ rằng trong bốn số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 4 . Hãy phát biểu bài toán tổng quát .
2 /
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ? Tại sao ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ? Tại sao ?
P/s : mấy bạn vui lòng trả lời nhanh , tỉ mỉ câu này giùm mk nha !
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
Chứng tỏ rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4.
Bốn số tự nhiên liên tiếp có dạng: m ; m + 1 ; m + 2 ; m + 3
Nếu m chia hết cho 4 thì tích m x (m + 1 ) x (m + 2) x (m + 3) chia hết cho 4
Nếu m chia cho 4 dư 1 thì (m + 3) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Nếu m chia cho 4 dư 2 thì (m + 2) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Nếu m chia cho 4 dư 3 thì (m + 1) chia hết cho 4 do đó tích 4 số trên chia hết cho 4
Vậy tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
Chứng tỏ rằng:
Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
Tổng của ba số tự nhiên liên tiếp là một số không chia hết cho 4
Số có dạng aaa aaa bao giờ cũng chia hết cho 7 ( chẳng hạng 333 333 chia hết cho 7)
Số có dạng abc abc bao giờ cũng chia hết cho 11 ( chẳng hạng 328 328 chia hết cho 11)
a) 3 số đó có dạng: a + a + 1 + a + 2 = a x 3 + 3 = 3 x (a+1)
=> Chia hết cho 3
b) 4 số đó có dạng: a+a+1+a+2+a+3 = a x 4 + 6 = 4 x (a+1) + 2
=> Không chia hết cho 4
c) aaaaaa = a x 111111 = a x 3 x 7 x 11 x 13 x 37
=> Chia hết cho 7
d) abc abc = abc x 1001 = abc x 7 x 11 x 13
=> Chia hết cho 7
hãy lấy hai thí dụ để minh họa mỗi câu sau là đúng
a, trong 4 số tự nhiên liên tiếp bao giờ cũng có 2 số mà hiệu hai số chia hết cho 3
b, trong 5 số tự nhiên liên tiếp bao giờ cũng có 2 số mà hiệu mà hiệu hai số chia hết cho 4
a, Thí dụ: 2; 3; 4; 5 có 5-2=3 chia hết cho 3
9;10;11;12 có 12 - 9 = 3 chia hết cho 3
b, Thí dụ: 1;2;3;4;5 Có 5-1=4 chia hết cho 4
6;7;8;9;10 có 10-6=4 chia hết cho 4
chứng minh rằng trong 3 số tự nhiên liên tiếp bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 2
Gọi 3 số cần tìm là a;a+1;a+2
Dễ thấy rằng;
a+2-a=2 chia hết cho 2
Vậy.....................................................