tim gia tri lon nhat
C= 3/(4x2-4x+5)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
TIM GIA TRI LON NHAT CUA BIEU THUC :
C=2+12/3x/X+5/+4
TIM GIA TRI NHO NHAT CUA BIEU THUC
C= -15/ 4x / 3X+7/+3
tim gia tri lon nhat
C= 3 / (4x2-4x+5)
giai cu the ra nhe
4x2-4x+5=4x2-4x+1+4=[2x-1]2+4> hoac =4
Để C có giá trị lớn nhất
=>[2x-1]2+4 có giá trị nhỏ nhất
=>[2x-1]2+4 có giá trị nhỏ nhất = 4
C có giá trị lớn nhất là3/4
Vay...
Tim gia tri cua x va y de bieu thuc C = -|x-2|-|y-3|-2009 co gia tri lon nhat ,tim gia tri lon nhat do
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
Ta có -|x - 2| < 0 ; -|y - 3| < 0
=> -|x - 2| - |y-3| < 0
=> C = -|x -2| - |y - 3| - 2009 < - 2009
GTLN của C là -2009 <=> |x - 2| = 0 ; |y - 3| = 0 <=> x = 2 và y = 3
tim gia tri lon nhat khi B=5/3x^2+4x+15
Tim gia tri nho nhat cua y de bieu thuc B=100-|y+3| co gia tri lon nhat, tim gia tri lon nhat do
Vì |y + 3| luôn lớn bằng 0 với mọi y
=> 100 - |y + 3| luôn bé bằng 0
=> B luôn bé bằng 0
Dấu "=" xảy ra <=> |y + 3| = 0
=> y + 3 = 0
=> y = -3
Vậy Max B = 100 tại y = -3
Ta có - |y - 3| < 0
=> B = 100 - |y - 3| < 100
GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3
Tim gia tri lon nhat
A=4x-x^2-3
B-x^2-4x-2
C=2x-2x^2-5
D=-2x^2-3x+5
\(A=4x-x^2-3=-\left(x^2-4x+3\right)=-\left(x^2-4x+4-1\right)\)
\(A=-\left(\left(x-2\right)^2-1\right)=-\left(x-2\right)^2+1\le1\forall x\)
\(\Rightarrow GTLN\) của A là 1 khi \(-\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy GTLN của A là 1 khi \(x=2\)
\(B=-x^2-4x-2=-\left(x^2+4x+2\right)=-\left(x^2+4x+4-2\right)\)
\(B=-\left(\left(x+2\right)^2-2\right)=-\left(x+2\right)^2+2\le2\forall x\)
\(\Rightarrow GTLN\) của B là 2 khi \(-\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
vậy GTLN của B là 2 khi \(x=-2\)
\(C=2x-2x^2-5=-2\left(x^2-x+\dfrac{5}{2}\right)=-2\left(\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right)\)
\(C=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
\(\Rightarrow GTLN\) của C là \(-\dfrac{9}{2}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
vậy GTLN của C là \(-\dfrac{9}{2}\) khi \(x=\dfrac{1}{2}\)
\(D=-2x^2-3x+5=-\left(2x^2+3x-5\right)=-\left(\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)-\dfrac{49}{8}\right)\)
\(D=-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
\(\Rightarrow GTLN\) của D là \(\dfrac{49}{8}\) khi \(-\left(\sqrt{2}x+\dfrac{3}{2\sqrt{2}}\right)=0\Leftrightarrow\sqrt{2}x+\dfrac{3}{2\sqrt{2}}=0\Leftrightarrow\sqrt{2}x=\dfrac{-3}{2\sqrt{2}}\Leftrightarrow x=\dfrac{-3}{4}\)
vậy GTLN của D là \(\dfrac{49}{8}\) khi \(x=\dfrac{-3}{4}\)
A=4x-x2-3
Ta có: \(A=-\left(x^2-4x+3\right)\)
\(=-\left(x^2-2x-2x+3\right)\)
\(=-\left[x\left(x-2\right)-2\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)\left(x-2\right)-1\right]\)
\(=-\left[\left(x-2\right)^2-1\right]\)
Ta có: \(\left(x-2\right)^2-1\ge-1\forall x\Rightarrow-\left[\left(x-2\right)^2-1\right]\le1\forall x\)
Vậy GTLNA = 1 tại x = 2.
B-x^2-4x-2
Ta có: \(B=x^2-2x-2x-2\)
\(=x\left(x-2\right)-2\left(x-2\right)-6\)
\(=\left(x-2\right)\left(x-2\right)-6\)
\(=\left(x-2\right)^2-6\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge6\forall x\)
Vậy GTNNB = 6 tại x = 2.
C=2x-2x^2-5
Ta có: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\) (làm tương tự 2 câu trên)
Ta có: \(-2\left(x-\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\forall x\)
Vậy GTLNC = \(-\dfrac{9}{2}\) tại x = \(\dfrac{1}{2}\).
D=-2x^2-3x+5
Ta có: \(D=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\) (tương tự câu C)
Ta có: \(-2\left(x+\dfrac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Vậy GTLND = \(\dfrac{49}{8}\) tại x = \(-\dfrac{3}{4}\).
tim gia tri lon nhat cua bieu thuc A=3-4x/x2+1
\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)
tìm tiềm kiện để (1) có nghiệm
a=0=>có nghiệm x=3/4 với a khác không
\(2^2-a\left(a-3\right)\ge0\)
\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)
GTLN A=\(4\)
A=(3-4x)/(x^2+1)
ta có 4-A=4-(3-4x)/(x^2+1)
=[4(x^2+1)-3+4x]/(x^2+1)
=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)
=(2x+1)^2/(x^2+1) >= 0 với mọi x
=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x
Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2
Tim gia tri nho nhat A=x2-2x
Tim gia tri lon nhat B=-x2+4x-5
Chung minh rang: x4+6x3+11x2+6x chia het cho 24 voi moi x thuoc N
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
Tim gia tri lon nhat cua P= -5x^2 - 4x + 1