Cho lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a; chiều cao bằng 2a . Mặt phẳng (P) qua B’ và vuông góc A’C chia lăng trụ thành hai khối. Tính khoảng cách từ điểm A đến (P).
A. 9 a 5 10
B. 7 a 5 5
C. 7 a 5 10
D. 3 a 5 10
Cho lăng trụ tam giác đều ABC.A’B’C’ có đáy bằng a, cạnh bên AA'= 2 a 3 . Thể tích của khối cầu ngoại tiếp lăng trụ ABC.A’B’C’ là
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, đỉnh A’ cách đều ba đỉnh A, B, C. Cạnh bên AA’ tạo với đáy một góc 45 ° Thể tích khối lăng trụ ABC.A’B’C’ bằng bao nhiêu?
A. a 3 10 10
B. a 3 3 12
C. a 3 4
D. a 3 8
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, đỉnh A’ cách đều ba đỉnh A, B, C. Cạnh bên AA’ tạo với đáy một góc 45 0 . Thể tích khối lăng trụ ABC.A’B’C’ bằng bao nhiêu?
A . a 3 3 10
B . a 3 3 12
C . a 3 4
D . a 3 8
Đáp án là C
Gọi G là trọng tâm của tam giác ABC.
Do tam giác ABC đều cạnh a nên
Diện tích tam giác ABC bằng a 3 3 4
Do đỉnh A’ cách đều ba đỉnh A, B, C nên A'G ⊥ (ABC) => A'G là đường cao của khối lăng trụ.
Theo giả thiết, ta có A ' A G ^ = 45 0 => ∆ A'GA vuông cân. Tù đó suy ra
Vậy thể tích của khối lăng trụ bằng
Cho lăng trụ tam giác đều A B C . A ’ B ’ C ’ có cạnh đáy bằng 2a, O là trọng tâm tam giác ABC và A ' O = 2 a 6 3 . Thể tích của khối lăng trụ A B C . A ’ B ’ C ’ bằng
A. 2 a 3
B. 2 a 3 3 .
C. 4 a 3 3 .
D. 2 a 3 3 .
Phương pháp
Tính chiều cao lăng trụ dựa vào định lý Pytago
Tính thẻ tích lăng trụ V = S.h với S là diện tích đáy và h là chiều cao lăng trụ
Cách giải:
Gọi E là trung điểm của BC.
Chọn A
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a; O là trọng tâm tam giác ABC và A ' O = 2 6 a 3 Thể tích của khối lăng trụ ABC.A’B’C’ bằng
A. 2 a 3
B. 4 a 3 3
C. 2 a 3 3
D. 4 a 3
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, độ dài cạnh bên bằng 2 a 3 , hình chiếu của đỉnh A’ trên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Thể tích khối lăng trụ ABC.A’B’C’ bằng
A. a 3 3 36 .
B. a 3 3 6 .
C. a 3 3 12 .
D. a 3 3 24 .
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A’B’C’
A . a 3 3 4
B . 4 a 3 3
C . 2 a 3 3
D . a 3 3 2
Đáp án C
Gọi M là trung điểm của BC suy ra
Lại có
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 ° Tính thể tích khối lăng trụ ABC.A’B’C’
A. a 3 3 4
B. 4 a 3 3
C. 2 a 3 3
D. a 3 3 2
Cho hình lăng trụ đứng ABC.A’B’C’ biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A’BC) bằng a/6. Tính thể tích khối lăng trụ ABC.A’B’C’.
A. 3 a 3 2 16
B. 3 a 3 2 4
C. 3 a 3 2 28
D. 3 a 3 2 8
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có độ dài cạnh đáy bằng a và chiều cao bằng 2a. Tính thể tích V của khối cầu ngoại tiếp hình lăng trụ ABC.A’B’C’
A. 32 3 πa 3 27
B. 32 3 πa 3 9
C. 8 3 πa 3 27
D. 32 3 πa 3 81