1. chứng minh N=111...1 có 1995 cs 1nhân 10....05 có 1994 cs 0 + 1 là số chính phương
Chứng minh số sau là số chính phương:
N=111...1{1995 số 1} . 1000...05{1994 số 0}+1
Số chính phương luôn có dạng 3n+1 hoặc 3n-1 (n \(\in\) N)
Vì 111...1 có 1995 chữ số 1 nên tổng các chữ số của của nó là 1995.1 = 1995 chia hết cho 3
Vì 1000...05 có 1994 chữ số 0 nên tổng các chữ số của nó là 1 + 1994.0 + 5 = 6 chia hết cho 3
Suy ra 111...11 . 1000...05 chia hết cho 3
Tích đó lại cộng thêm một, ứng với dạng đúng của một chính phương : 3n + 1
Vậy N là số chính phương.
N=111...1{1995 số 1} . 1000...05{1994 số 0}+1
= \(\frac{\left(10^{1995-1}\right)}{9}.\left(10^{1995}+5\right)+1\)
= \(\frac{10^{1995}.10^{1995}-1.10^{1995}+5.10^{1995}-5}{9}+1\)
= \(\frac{10^{1995.2}+4.10^{1995}+4}{9}\)
= \(\frac{\left(10^{1995}\right)^2+4.10^{1995}+4}{9}\)
= \(\frac{\left(10^{1995}\right)^2+2.2.10^{1995}+2^2}{9}\)
= \(\frac{\left(10^{1995}+2\right)^2}{9}=\left(\frac{10^{1995}+2}{3}\right)^2\)
Nhận thấy: 101995+2 có tổng các chữ số là: 1+0+0+0+...+0{1995 số 0}+2
Ta có: tổng các chữ số của 101995+2 chỉ có 1 chữ số 1 và 1 chữ số 2, còn lại là số 0.
=> tổng các chữ số của 101995+2 = 3
=> 101995+2 chia hết cho 3 => \(\left(\frac{10^{1995}+2}{3}\right)^2\in N\)
\(\RightarrowĐPCM\)
Chứng minh số sau là số chính phương: N=111...1{1995 số 1} . 1000...05{1994 số 0}+1
N=111...1{1995 số 1} . 1000...05{1994 số 0}+1
= \(\frac{\left(10^{1995-1}\right)}{9}.\left(10^{1995}+5\right)+1\)
= \(\frac{10^{1995}.10^{1995}-1.10^{1995}+5.10^{1995}-5}{9}+1\)
= \(\frac{10^{1995.2}+4.10^{1995}+4}{9}\)
= \(\frac{\left(10^{1995}\right)^2+4.10^{1995}+4}{9}\)
= \(\frac{\left(10^{1995}\right)^2+2.2.10^{1995}+2^2}{9}\)
= \(\frac{\left(10^{1995}+2\right)^2}{9}=\left(\frac{10^{1995}+2}{3}\right)^2\)
Nhận thấy: 101995+2 có tổng các chữ số là: 1+0+0+0+...+0{1995 số 0}+2
Ta có: tổng các chữ số của 101995+2 chỉ có 1 chữ số 1 và 1 chữ số 2, còn lại là số 0.
=> tổng các chữ số của 101995+2 = 3
=> 101995+2 chia hết cho 3 => \(\left(\frac{10^{1995}+2}{3}\right)^2\in N\)
\(\RightarrowĐPCM\)
mk trả lời gần xong , bạn cướp đi của mk trong gan tất hic hic
chứng minh rằng : A= 11...1 * 10...05 +1 là số chính phương. biết rằng có 1995 chữ số 1 và có 1994 chữ số 0
Chứng minh các số sau là số chính phương:
B=22499......99100......009 ( có n-2 chữ số 9 và n chữ số 0 )
C=444.......44888........889( có n+1 chữ số 4 và n chữ số 8 )
D=111.....1 x 100...05+1 ( có 1995 chữ số 1 và 1994 chữ số 0)
Chứng minh C=11...1(1995 chữ số 1) . 1000...05(1994 chữ số 0) + 1 là số chính phương
\(C=\frac{999...9}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 9 và 1995 chữ số 0)
\(C=\frac{1000...0-1}{9}.\left(1000...0+5\right)+1\) (1995 chữ số 0)
\(C=\frac{10^{1995}-1}{9}.\left(10^{1995}+5\right)+1\)
\(C=\frac{\left(10^{1995}\right)^2+4.10^{1995}-5}{9}+1=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}-\frac{5}{9}+1\)
\(C=\left(\frac{10^{1995}}{3}\right)^2+2.\frac{10^{1995}}{3}.\frac{2}{3}+\left(\frac{2}{3}\right)^2=\left(\frac{10^{1995}}{3}+\frac{2}{3}\right)^2\) Là số chính phương
Có hay không 1 số chính phương gồm 1995 cs 1 còn lại là cs 0?
ko tồn tại đâu
Chứng minh rằng B là số chính phương biết:
B=11...111(n cs 1)22...222(n+1 cs 2)5 (n thuộc N*)
C/M :
1111...11(có 1995 số 1) x 100...05(có 1994 số 0) là số chính phương
Chứng minh số: N=111..1.100...09+1(111...1 có 1995 chữ số 1, 100...09 có 1994 chữ số 0)