Những câu hỏi liên quan
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
TM
Xem chi tiết
TC
Xem chi tiết
DM
16 tháng 9 2016 lúc 18:14

4858347

Bình luận (0)
HA
26 tháng 10 2016 lúc 23:10

trong vở bài tập toán lớp 7 tập 1 xoắn 11 bài 115 có  bài tương tự đó bạn

Bình luận (0)
TT
Xem chi tiết
HM
28 tháng 9 2016 lúc 13:57

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

Bình luận (0)
BV
28 tháng 9 2016 lúc 15:00

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !

Bình luận (0)
KT
28 tháng 10 2018 lúc 5:03

\(x^3+y^3=2x^2y^2\)

<=>   \(\left(x^3+y^3\right)^2=4x^4y^4\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

<=>  \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

<=>  \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ

Bình luận (0)
VH
Xem chi tiết
NQ
Xem chi tiết
HH
Xem chi tiết
AN
17 tháng 11 2016 lúc 8:58

Với y =  0 thi 1 - xy = 0 là bình phương của số hữu tỷ

Với y \(\ne0\)thì ta chia 2 vế cho y4 thì được

\(\frac{x^5}{y^4}+y=2\frac{x^2}{y^2}\)

\(\Leftrightarrow-y=\frac{x^5}{y^4}-2\frac{x^2}{y^2}\)

\(\Leftrightarrow-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}\)

\(\Leftrightarrow\Leftrightarrow1-xy=\frac{x^6}{y^4}-2\frac{x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)

Vậy 1 - xy là bình phương của 1 số hữu tỷ

Bình luận (0)