Những câu hỏi liên quan
PB
Xem chi tiết
CT
26 tháng 5 2017 lúc 18:11

Đáp án đúng : A

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 12 2017 lúc 16:28

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 2 2019 lúc 3:32

Đáp án C.

Cách giải:

Đặt y = f(x).g(x) = h(x). Khi đó:

h(0) = f(0).g(0) = 0.0 = 0

h(1) = f(1).g(1) = 1.(-1) = -1

Do đó, ta chọn phương án C

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 4 2019 lúc 12:34

Đáp án D

Ta có:  y ' = 3 a x 2 + 2 b x + c

+) Đồ thị hàm số f'(x) đi qua gốc tọa độ => c=0

+) Đồ thị hàm số f'(x) có điểm cực trị:

1 ; − 1 ⇒ 6 a + 2 b = 0 3 a + 2 b = − 1 ⇔ a = 1 3 b = − 1

Vậy hàm số f ' x = x 2 − 2 x . Đồ thị hàm số f(x) tiếp xúc với trục hoành nên có cực trị nằm trên trục hoành. Các giá trị cực trị của hàm số f(x) là:

f 0 = d f 2 = 8 3 − 4 + d = − 4 3 + d

do điểm tiếp xúc có hoành độ dương

=>  d = 4 3 => f(x) cắt trục tung tại điểm có tung độ  4 3

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2018 lúc 8:12

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 11 2018 lúc 12:23

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 3 2018 lúc 10:16

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 3 2018 lúc 15:02

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 5 2019 lúc 16:31

2 điểm

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2019 lúc 16:50

Chọn B.

Phương pháp:

Dựa vào đồ thị hàm số xác định số điểm cực trị của hàm số.

Cách giải:

Đồ thị hàm số y = f(x) có 2 điểm cực trị.  

Bình luận (0)