Cho hình chóp S.ABC có ABC là tam giác vuông cân tại B, AB = BC = 2a, S A B ^ = S C B ^ = 90 ° . Và khoảng cách từ A đến mặt phẳng (SBC) bằng a 2 Tính diện tích mặt cầu ngoại tiếp S.ABC theo a.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B có AB=BC=a,SB=2a và SA vuông góc với đáy. Tính thể tích khối chóp S.ABC.
Cho hình chóp S.ABC có tam giác ABC vuông tại A, BC = 2a , góc ABC = 60 o . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC), tam giác SAB cân tại S, tam giác SBC vuông tại S. Thể tích khối chóp S.ABC là:
A. a 3 2
B. a 3 4
C. a 3 8
D. a 3 16
Cho hình chóp S.ABC có tam giác ABC vuông tại A, BC = 2a, góc ACB = 60 ° . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC), tam giác SAB cân tại S, tam giác SBC vuông tại S. Thể tích khối chóp S.ABC là:
A. a 3 2
B. a 3 4
C. a 3 8
D. a 3 16
Cho hình chóp S.ABC có tam giác ABC vuông tại A, BC = 2a; ACB ^ = 60 o . Mặt phẳng (SAB) vuông góc với mặt phẳng (ABC), tam giác SAB cân tại S, tam giác SBC vuông tại S. Thể tích khối chóp S.ABC là:
A. a 3 2
B. a 3 4
C. a 3 8
D. a 3 16
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC=2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
A . V = a 3
B . V = 2 a 3 3
C . V = 2 a 3 3
D . a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Tam giác SAC cân tại S có đường cao và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
A . a 3 3
B . 2 a 3
C . a 3 2
D . a
Đáp án A.
Theo giả thiết ta có SO ⊥ (ABC). Gọi D là điểm đối xưng với B qua O
=> ABCD là hình vuông => AB//CD
=> d(AB;SC) = d(AB;(SCD)) = d(E;(SCD)) = 2d(O;(SCD))(Với E, F lần lượt là trung điểm của AB và CD).
Áp dung tính chất tứ diện vuông cho tứ diện OSCD ta có:
Cho hình chóp S.ABC có tam giác ABC vuông tại A, tam giác SAC vuông cân tại S. Biết AB=a, AC=2a, S A C ⊥ A B C . Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC
A. 2 πa 2
B. 4 πa 2
C. 5 πa 2
D. 3 πa 2
Cho hình chóp S.ABC có tam giác ABC vuông tại A, tam giác SAC vuông cân tại S. Biết AB = a, Ac = 2a. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABC.
A. 2 π a 2
B. 4 π a 2
C. 5 π a 2
D. 3 π a 2
Chọn C.
Gọi H, I lần lượt là trung điểm của BC, AC.
Tam giác SAC vuông cân tại S
Tam giác ABC vuông tại A => IA= IB = IC (1).
Lại có:
Mà HI là đường trung bình của tam giác ABC
Do đó: I là tâm mặt cầu ngoại tiếp hình chóp S.ABC
Vậy diện tích mặt cầu là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Tam giác SAC cân tại S có đường cao S O = a 3 và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AB và SC theo a
A. a 3 3 .
B. 2 a 3 .
C. a 3 2 .
D. a
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, A B = a ; S A = 2 a ; S A ⊥ A B C . Bán kính của mặt cầu ngoại tiếp hình chóp S.ABC là:
A. a 6 2
B. a 6 6
C. a 3 2
D. a 6 3
Gọi O, I lần lượt là trung điểm của AC, SC.
Ta có:
∆ A B C vuông cân tại B ⇒ O là tâm đường tròn ngoại tiếp và A C = A B 2 = a 2 .
∆ S A C vuông tại A, I là trung điểm của S C ⇒ I S = I C = I A 2
Từ (1), (2) suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABC, bán kính
Chọn: A