Trong các số phức z thỏa mãn z + 3 + 4 i = 2 , gọi z 0 là số phức có mô đun nhỏ nhất. Khi đó
A. z 0 = 7
B. z 0 =2
C. z 0 = 3
D. Không tồn tại số phức z 0
Gọi T là tập hợp các số phức z thỏa mãn |z-i| ≥ 3 và |z-i| ≤ 5. Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12-2i
B. -12+2i
C. 6-4i
D. 12+4i
Đáp án A
Đặt Khi đó, ta có
Tập hợp các số phức nằm trong hoặc trên đường tròn tâm I 1 (1;0) bán kính R 1 = 5
=> Tập hợp các số phức nằm ngoài hoặc trên đường tròn tâm I 2 ( 0 ; 1 ) , bán kính R 2 = 3
Dựa vào hình vẽ, ta thấy rằng
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2 .
A. 12 - 2i
B. -2 + 12i
C. 6 - 4i
D. 12 + 4i
Đáp án A
Đặt z = x + y i x , y ∈ ℝ . Khi đó, ta có
z - 1 = x - 1 2 + y 2 ≤ 5 ⇔ x - 1 2 + y 2 ≤ 25 →
Tập hợp các số phức nằm trong hoặc trên đường tròn
tâm I 1 1 ; 0 bán kính R 1 = 5 .
z - i = x 2 + ( y - 1 ) 2 ≥ 3 ⇔ x 2 + ( y - 1 ) 2 ≥ 9 → Tập hợp các số phức nằm ngoài hoặc trên đường tròn tâm , bán kính R 2 = 3 .
Dựa vào hình vẽ, ta thấy rằng z m i n = z 1 = 0 - 2 i = - 2 i z m a x = z 2 = 6 + 0 i = 6 ⇒ z 1 + 2 z 2 = 12 - 2 i .
Gọi T là tập hợp số phức z thỏa mãn z − i ≥ 3, z − 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2 ?
A. 12 − 2 i
B. − 2 + 12 i
C. 6 − 4 i
D. 12 + 4 i
Đáp án A
Gọi z = a + b i , a , b ∈ ℝ
+ z − 1 ≤ 5 ⇔ a − 1 2 + b 2 ≤ 5 2 C 1
+ z − 1 ≥ 3 ⇔ a 2 + b − 1 2 ≥ 3 2 C 2
C 1 là tập hợp số phức nằm trong hoặc trên đường tròn tâm A 1 ; 0 và bán kính R 1 = 5 .
C 2 là tâp hợp số phức nằm ngoài hoặc trên đường tròn tâm B 0 ; 1 và bán kính R 2 = 3 từ hình vẻ
⇒ z min = z 1 = − 2 i z max = z 2 = 6 ⇒ z 1 + 2 z 2 = 12 − 2 i
Gọi T là tập hợp số phức z thỏa mãn z − i ≥ 3 , z − 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2 ?
A. 12 − 2 i
B. - 2 + 12 i
C. 6 − 4 i
D. 12 + 4 i
Trong các số phức z thỏa mãn |z - 3i| + | i z ¯ + 3| =10 , tìm số phức z có mô-đun nhỏ nhất.
A. z = 2 hoặc – 2
B. z= 3 hoặc – 3
C. z = 4 hoặc – 4
D. tất cả sai
Chọn C.
Áp dụng công thức:
Ta có:
Giải bất phương trình 100 ≤ 4 ta có ta có 0 ≤ |z| ≤ 4
Vậy min|z| = 4 đạt được khi
Trong các số phức z thỏa mãn z − 2 − 3 i = 2 , gọi z 0 là số phức có môđun nhỏ nhất. Khi đó z 0 bằng
A. z 0 = 15 − 4 13
B. z 0 = 18 − 4 13
C. z 0 = 2 4 − 13
D. z 0 = 17 − 4 13
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2