Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 8 2018 lúc 2:16

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 1 2017 lúc 8:43

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2018 lúc 14:30

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2019 lúc 14:33

Đáp án là  C.

Ta có: S A B C = 1 2 B A . B C . sin A B C ⏞ = 1 2 a . a . sin 60 0 = a 2 3 4 ⇒ S A B C D = 2 S A B C = a 2 3 2 .

 

Thể tích của khối chóp S.BCD là:

V S . B C D = 1 3 S A . S B C D = 1 3 S A . 1 2 S A B C D = 1 3 . A = a 3 . a 2 3 2 = a 8 2 .

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 8 2019 lúc 5:22

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 10 2018 lúc 5:23

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 4 2018 lúc 18:09

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 5 2018 lúc 12:08

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 11 2018 lúc 4:48

Đáp án là  D.

Khi SD thay đổi thi AC thay đổi. Đặt AC = x.

Gọi O = A C ∩ B D .

Vì S A = S B = S C  nên chân đường cao SH trùng với tâm đường tròn ngoại tiếp tam giác ABC.

⇒ H ∈ B O

Ta có:  O B = a 2 − x 2 2 = 4 a 2 − x 2 4 = 4 a 2 − x 2 2

S A B C = 1 2 O B . A C = 1 2 x . 4 a 2 − x 2 2 = x 4 a 2 − x 2 4

H B = R = a . a . x 4 S A B C = a 2 x 4. x 4 a 2 − x 2 4 = a 2 4 a 2 − x 2

S H = S B 2 − B H 2 = a 2 − a 4 4 a 2 − x 2 = a 3 a 2 − x 2 4 a 2 − x 2

S H = S B 2 − B H 2 = a 2 − a 4 4 a 2 − x 2 = a 3 a 2 − x 2 4 a 2 − x 2

= 1 3 a x . 3 a 2 − x 2 ≤ 1 3 a x 2 + 3 a 2 − x 2 2 = a 3 2

Bình luận (0)
HD
Xem chi tiết
LP
16 tháng 6 2023 lúc 10:14

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

Bình luận (0)
LP
16 tháng 6 2023 lúc 10:15

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

Bình luận (0)