Biết rằng hai số phức z 1 , z 2 thỏa mãn | z 1 - 3 - 4 i | = 1 và | z 2 - 3 - 4 i | = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của P = | z - z 1 | + | z - 2 z 2 | + 2 bằng:
Biết rằng hai số phức z 1 ; z 2 thỏa mãn z 1 - 3 - 4 i = 1 và z 2 - 3 - 4 i = 1 2 Số phức z có phần thực là a và phần ảo là b thỏa mãn 3a – 2b – 12 = 0. Giá trị nhỏ nhất của P = z - z 1 + z - 2 z 2 + 2 bằng
A. P m i n = 9945 11
B. P m i n = 5 - 2 3
C. P m i n = 9945 13
D. P m i n = 5 + 2 5
Biết rằng hai số phức z 1 , z 2 thỏa mãn z 1 − 3 − 4 i = 1 và z 2 − 3 − 4 i = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a − 2 b − 12 = 0 . Giá trị nhỏ nhất của P = z − z 1 + z − 2 z 2 + 2 bằng:
A. P min = 9945 11 .
B. P min = 5 − 2 3 .
C. P min = 9945 13 .
D. P min = 5 + 2 5 .
Biết rằng hai số phức z 1 , z 2 thỏa mãn z 1 - 3 - 4 i = 1 và z 2 - 3 - 4 i = 1 2 . Số phức z có phần thực là a và phần ảo là b thỏa mãn 3 a - 2 b = 12 . Giá trị nhỏ nhất của biểu thức P = z - z 1 + z - z 2 + 2 bằng
A. P m i n = 3 1105 11
B. P m i n = 5 - 2 3
C. P m i n = 3 1105 13
D. P m i n = 5 + 2 5
Chọn đáp án C
Gọi M 1 , M 2 , M lần lượt là điểm biểu diễn của các số phức z 1 , 2 z 2 , z trên mặt phẳng tọa độ Oxy.
Do z 1 - 3 - 4 i = 1 nên quỹ tích điểm M 1 là đường tròn C 1 có tâm I 1 3 ; 4 và bán kính R = 1
Do z 2 - 3 - 4 i = 1 2 ⇔ 2 z 2 - 6 - 8 i = 1 nên quỹ tích điểm M 2 là đường tròn C 2 có tâm I 2 6 ; 8 và bán kính R = 2
Ta có điểm M(a; b) thỏa mãn 3a - 2b = 12 nên quỹ tích điểm M là đường thẳng d: 3x - 2y - 12 = 0
Khi đó
Gọi C 3 là đường tròn đối xứng với đường tròn C 2 qua đường thẳng d.
Ta tìm được tâm của C 3 là I 3 138 13 ; 64 13 và bán kính R = 1
Khi đó
với M 3 ∈ C 3 và A, B lần lượt là giao điểm của đường thẳng I 1 I 3 với hai đường tròn C 1 , C 3 (quan sát hình vẽ).
Dấu "=" xảy ra khi và chỉ khi M 1 ≡ A và M 3 ≡ B
Vậy P m i n = A B + 2 = I 1 I 3 = 3 1105 13
Cho số phức z, tìm giá trị lớn nhất của z biết rằng z thỏa mãn điều kiện - 2 - 3 i 3 - 2 i + 1 = 1 .
A. 1
B. 2
C. 3
D. 2
Tìm mô đun của số phức w = z 3 + z + 1 z 2 + 1 biết rằng số phức z thỏa mãn điều kiện z + z 1 + i + z - z 2 + 3 i = 4 - i
A. 170 10
B. 171 10
C. 172 10
D. 173 10
Gọi z = a + bi với a , b ∈ ℝ
Khi đó phương trình z + z 1 + i + z - z 2 + 3 i = 4 - i trở thành:
2 a 1 + i + 2 b 2 + 3 i = 4 - i ⇔ 2 a + 4 b + 2 a + 6 b i = 4 - i
Do đó:
2 a + 4 b = 4 2 a + 6 b = - 1 a = 1 2 b = - 1 2 ⇒ z = 1 2 - 1 2 i
Ta có: w = z 3 + z + 1 z 2 + 1 - = z + 1 z 2 + 1 Thay 1 2 - 1 2 i vào ta được:
w = 1 2 - 1 2 i + 1 1 2 - 1 2 i 2 + 1 = 1 2 - 1 2 i + 1 - 1 2 i + 1 = 13 10 - 1 10 i
Suy ra w = 13 10 2 + - 1 10 2 = 170 10
Đáp án A
Cho số phức z thỏa mãn z - 1 2 - i + i = 5 . Biết rằng tập hợp biểu diễn số phức w = (1-i)z + 2i có dạng ( x + 2 ) 2 + y 2 = k Tìm k.
A. k = 92
B. k = 92
C. k = 50
D. k = 96
Đáp án C.
Ta có z - 1 2 - i + i = 5
Vậy tập hợp điểm biểu diễn số phức w là đường tròn tâm I(-2;0) bán kính R = 5 2 tức là đường tròn (C): ( x + 2 ) 2 + y 2 = 50
Cho số phức z thay đổi thỏa mãn z - 1 = 1 . Biết rằng tập hợp các số phức w = 1 + 3 i z + 2 là đường tròn có bán kính bằng R. Tính R.
Cho số phức z thay đổi thỏa mãn z - 1 = 1 . Biết rằng tập hợp các số phức w = 1 + 3 i z + 2 là đường tròn có bán kính bằng R. Tính R.
A. R = 8
B. R =1
C. R = 4
D. R = 2.
Cho các số phức z thỏa mãn z + 1 = 2 . Biết rằng tập hợp các điểm biểu diễn các số phức w = ( 1 + i 8 ) z + i là một đường tròn. Bán kính r của đường tròn đó là