Những câu hỏi liên quan
NQ
Xem chi tiết
H24
22 tháng 10 2017 lúc 9:50

vì a-b+c => 3-3+3=3 và 1/3+1/3+1/3=3/3=1         =>a,b,c=3

Bình luận (0)
VT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
LD
23 tháng 9 2020 lúc 15:43

a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2

<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2

<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )

<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0

<=> a2 + b2 + c2 - 2.9 = 0

<=> a2 + b2 + c2 - 18 = 0

<=> a2 + b2 + c2 = 18

Xét ( a + b + c )2 ta có :

( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca 

                     = ( a2 + b2 + c2 ) + 2( ab + bc + ca )

                     = 18 + 2.9

                     = 18 + 18 = 36

=> ( a + b + c )2 = 36

=> a + b + c = 6 ( do a, b, c là các số dương )

Bình luận (0)
 Khách vãng lai đã xóa
SB
Xem chi tiết
H24
22 tháng 1 2019 lúc 21:21

Em phải học hằng đảng thức lớp 8

Anh giải cho :

ta có: 

<=> \(a^2-2ab+b+ab⋮9\)

<=> \(\left(a-b\right)^2+ab⋮9\)

=> \(\hept{\begin{cases}\left(a-b\right)^2⋮9\\ab⋮9\end{cases}}\)

Xét \(\left(a-b\right)^2⋮9\)

<=> \(\orbr{\begin{cases}a-b⋮3\\a-b⋮-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\\\hept{\begin{cases}a⋮-3\Rightarrow a⋮3\\b⋮-3\Rightarrow b⋮3\end{cases}}\end{cases}}\left(1\right)\)

Xét \(ab⋮9\)

<=> \(\hept{\begin{cases}a⋮9\Rightarrow a⋮3\\b⋮9\Rightarrow b⋮3\end{cases}}\left(2\right)\)

Từ (1) và (2) => \(a⋮3\)

                           \(b⋮3\)

Bình luận (0)
YN
26 tháng 11 2021 lúc 13:04

Answer:

Ta có:

\(a^2-ab+b^2⋮9⋮3\)

\(\Rightarrow a^2+2ab+b^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2-3ab⋮3\)

\(\Rightarrow\left(a+b\right)^2⋮3\)

\(\Rightarrow a+b⋮3\) (Vì 3 là số nguyên tố)

\(\Rightarrow\left(a+b\right)^2⋮9\)

Mà: \(a^2-ab+b^2=\left(a+b\right)^2-3ab⋮9\)

\(\Rightarrow3ab⋮9\Rightarrow ab⋮3\)

Do vậy: tồn tại ít nhất một trong hai số a hoặc b sẽ chia hết cho 3. Không mất tổng quát, ta giả sử a chia hết được cho 3

Lúc này: \(a.\left(a-b\right)⋮3\) mà \(a^2-ab+b^2=a.\left(a-b\right)+b^2⋮3\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
CC
Xem chi tiết
NN
Xem chi tiết