Những câu hỏi liên quan
CA
Xem chi tiết
NH
12 tháng 1 2016 lúc 20:45

làm ko bt đúng hay sai:

giả sử 3^n+4 là scp=>3^n+4=a^2

mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ

=>a có dạng 4k+1 hoặc a có dạng 4k+3

+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1

+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1

vậy a^2=8m+1(1)

mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)

nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)

vậy 3^n+4 ko thể là scp

Bình luận (0)
NQ
12 tháng 1 2016 lúc 20:30

3n + 4 và số nào không thể cùng là các số CP 

Bình luận (0)
NT
Xem chi tiết
VQ
6 tháng 1 2016 lúc 18:12

vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ

Bình luận (0)
NH
Xem chi tiết
NH
12 tháng 1 2016 lúc 18:13

ta thấy n^2<n(n+1)<n(n+2)<(n+1)^2

mà n^2 và(n+1)^2 là 2 scp liên tiếp, mà giữa 2 scp liên tiếp ko có sô chính phương nào nên n(n+1) và n(n+2) ko là scp

tick nha

Bình luận (0)
BA
Xem chi tiết
HN
Xem chi tiết
NT
Xem chi tiết
H24
12 tháng 1 2016 lúc 22:05

Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
HV
13 tháng 1 2016 lúc 17:13

Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33

Còn 5!; 6!; …; n! đều tận cùng bởi 0

Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3

Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TP
14 tháng 3 2021 lúc 9:06

2n+1=a^2 (1), 3n+1=b^2 (2)

Từ (1) suy ra a lẻ, đặt a=2k+1 suy ra 2n+1=4k^2+4k+1, n=2k^2+2k, suy ra n chẵn

suy ra 3n+1 lẻ, từ 2 suy ra b lẻ. Đặt b=2p+1

(1)+(2) ta có 5n+2=4k^2+4k+1+4p^2+4p+1, suy ra 5n=4k(k+1)+4p(p+1)

suy ra 5n chia hết cho 8, suy ra n chia hết cho 8

Ta cần chứng minh n chia hết cho 5

Số chính phương có các tận cùng là 0,1,4,5,6,9

Lần lượt xét các trường hợp n=5q+1, 5q+2, 5q+3,5q+4, đều không thỏa mãn 2n+1, 3n+1 là số chính phương. Vậy n phải chia hêts cho 5

Mà 5 và 8 nguyên tố cùng nhau, nên n chia hết cho 40 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
VD
13 tháng 3 2021 lúc 21:02
Chịu lớp 8 thì thôi
Bình luận (0)
 Khách vãng lai đã xóa