Những câu hỏi liên quan
HH
Xem chi tiết
NV
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
HV
Xem chi tiết
NT
2 tháng 11 2017 lúc 13:49

A = 4 nha bạn.

Bình luận (0)
LH
2 tháng 11 2017 lúc 13:50

A chỉ có giá trị lớn nhất khi |x+1|=0 =>x=-1

Ta có : A=15|x+1|+32/6|x+1|=15|-1+1|+32/6|-1+1|+8=32/4=4

Vậy giá trị lớn nhất của biểu thức A là 4

Bình luận (0)
HA
Xem chi tiết
TP
14 tháng 4 2019 lúc 6:34

Áp dụng bđt Cauchy ta có :

\(x^4+1\ge2\sqrt{x^4}=2x^2\)

Khi đó : \(\frac{x^2}{x^4+1}\le\frac{x^2}{2x^2}=\frac{1}{2}\)

Hay \(B\le\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\pm1\)

Bình luận (0)
NT
Xem chi tiết
MH
Xem chi tiết
DH
11 tháng 8 2018 lúc 21:32

Đặt \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\)

\(\Rightarrow\frac{4}{3}C=\frac{4}{3}.\left(\frac{3\left|x\right|+2}{4\left|x\right|-5}\right)=\frac{12\left|x\right|+8}{12\left|x\right|-15}=\frac{12\left|x\right|-15+23}{12\left|x\right|-15}\)

                                                                \(=1+\frac{23}{12\left|x\right|-15}\)

Để C đạt GTLN \(\Leftrightarrow\left(12\left|x\right|-15\right)_{min}\)

Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow12\left|x\right|\ge0\Rightarrow12\left|x\right|-15\ge-15\)

Dấu "=" xảy ra <=> \(\left|x\right|=0\Leftrightarrow x=0\)

Vậy ...

Bình luận (0)
CO
Xem chi tiết
EC
24 tháng 7 2019 lúc 20:37

Giải:

Ta có: A = \(\frac{2017-2n}{8n-4}\)

=> 4A = \(\frac{8068-8n}{8n-4}=\frac{-\left(8n-4\right)+8064}{8n-4}=-1+\frac{8064}{8n-4}\)

Để A đạt giá trị lớn nhất <=> 4A đạt giá trị lớn nhất

<=> \(-1+\frac{8064}{8n-4}\) đạt giá trị lớn nhất

<=> 8n - 4 đạt giá trị nhỏ nhất

Do n \(\in\)Z => 8n - 4 = 4 => 8n = 8 => n = 1

Thay n = 1 vào biểu thức 4A, ta được :

   4A =   \(-1+\frac{8064}{8.1-4}=-1+\frac{8064}{4}=-1+2016=2015\)

<=> A = \(\frac{2015}{4}\) <=> Max của A = 2015/4 tại n = 1

Bình luận (0)