Cho hàm số y = f x xác định, liên tục trên - 1 ; 5 2 và có đồ thị là đường cong như hình vẽ.
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f x trên - 1 ; 5 2 là:
A. M = 4 , m = 1
B. M = 4 , m = - 1
C. M = 7 2 , m = - 1
D. M = 7 2 , m = 1
Cho hàm số y=f(x) xác định trên ℝ \ 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ
Hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 4.
B. 3.
C. 2.
D. 5.
Đáp án A
Từ bảng biến thiên của hàm số y=f(x), suy ra bảng biến thiên của hàm số y = f ( x ) là
Dựa vào bảng biến thiên, ta suy ra hàm số có 4 điểm cực trị.
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x) +x .
A. Không có giá trị
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f'(x). Biết rằng đồ thị hàm số f'(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x.
A. Không có giá trị
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y = f(X) xác định trên R\{-1} , liên tục trên từng khoảng xác định và có bảng biến thiên như hình dưới đây.
Số nghiệm của phương trình [ f ( x ) ] 2 + f ( x ) + x x = 1 là
A. 1.
B. 0.
C. 2.
D. 3.
Hàm số y= f(x) xác định, liên tục trên R và đạo hàm f ' ( x ) = 2 ( x - 1 ) 2 ( 2 x + 6 ) . Khi đó hàm số f(x)
A. Đạt cực đại tại điểm x= 1
B. Đạt cực tiểu tại điểm x= -3
C. Đạt cực đại tại điểm x= -3
D. Đạt cực tiểu tại điểm x= 1
Cho hàm số y = f ( x ) – c o s 2 x với f(x) là hàm số liên tục trên R. Trong các biểu thức dưới đây, biểu thức nào xác định f(x) thỏa mãn y ' = 1 ∀ x .
A. x + 1 2 cos 2 x
B. x - 1 2 cos 2 x
C. x − sin 2 x
D. x + sin 2 x
Cho hàm số y = f(x) – cos2x với f(x) là hàm số liên tục trên R . Trong 4 biểu thức dưới đây, biểu thức nào xác định f(x) thỏa mãn y’ = 1, ∀ x ∈ R?
A. x + 1 2 cos 2 x
B. x - 1 2 cos 2 x
C. x – sin2x
D. x + sin2x
Chọn A.
Ta có: y’ = f’(x) + 2cosxsinx = f’(x) + sin2x
y’(x) = 1 ⇔ f’(x) + sin2x = 1 ⇔ f’(x) = 1 – sin2x ⇒ f(x) = x + ½ cos2x.
Cho hàm số y = f(x) xác định, liên tục trên [-1; 1] và có bảng biến thiên như sau:
Cho hàm số y = f x − cos 2 x với f(x) là hàm số liên tục trên R. Trong các biểu thức dưới đây, biểu thức nào xác định f(x) thỏa mãn y ' = 1 ∀ x . .
A. x + 1 2 cos 2 x
B. x − 1 2 cos 2 x
C. x − sin 2 x
D. x + sin 2 x .
Đáp án A
Ta có
y ' = f ' x + 2 sin x . cos x = f ' x + sin 2 x
y ' = 1 ⇔ f ' x + sin 2 x = 1 ⇔ f ' x = 1 − sin 2 x ⇒ f x = x + 1 2 cos 2 x