Những câu hỏi liên quan
ND
Xem chi tiết
NN
27 tháng 3 2017 lúc 18:40

Ta có:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{2n+1}{n^2}-\frac{2n+1}{\left(n+1\right)^2}\)

\(=1-\frac{2n+1}{\left(n+1\right)^2}\)

Vậy \(A=\frac{2n+1}{\left(n+1\right)^2}\)

Bình luận (0)
VP
28 tháng 3 2017 lúc 14:56

SAI RỒI ĐÁP ÁN LÀ N^2/(N+1)^2

Bình luận (0)
VD
Xem chi tiết
NP
9 tháng 2 2019 lúc 12:31

Bạn thử giải câu này xem

NHỚ ĐỌC KỸ ĐỀ ĐẤY

https://olm.vn/hoi-dap/detail/211451950700.html?pos=476647086293

Bình luận (0)
H24
9 tháng 2 2019 lúc 13:08

\(x\left(x+2\right)\left(x^2+2x+2\right)+1\)

\(=\left(x^2+2x\right)\left(x^2+2x+2\right)+1\)

Đặt: \(x^2+2x=t\)

khi đó: \(\left(x^2+2x\right)\left(x^2+2x+2\right)+1=t\left(t+2\right)+1=\left(t+1\right)^2\)

\(=\left(x^2+2x+1\right)^2=\left(x+1\right)^4\)

b) Xét: \(\left(n+1\right)^2-n^2=\left(n+1+n\right)\left(n+1-n\right)=2n+1\)

Khi đó:

\(A=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(A=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{\left(n+1\right)^2-n^2}{n^2.\left(n+1\right)^2}\)

\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

\(A=1-\frac{1}{\left(n+1\right)^2}\)

Bình luận (0)
BT
Xem chi tiết
PD
9 tháng 4 2018 lúc 20:03

\(A=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(A=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{2n+1}{n^2\cdot\left(n^2+2n+1\right)}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)

\(A=1-\dfrac{1}{n^2+2n+1}\)

\(A=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)

Bình luận (0)
NH
Xem chi tiết
TN
Xem chi tiết
NC
25 tháng 9 2019 lúc 9:14

Câu hỏi của pham nhu nguyen - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 9 2018 lúc 17:12

Xét biểu thức tổng quát:Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó ta có: Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

VậyBài tập tổng hợp chương 2 Đại số 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bình luận (0)
BM
Xem chi tiết
LM
Xem chi tiết
KS
19 tháng 10 2018 lúc 13:00

\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+...+\frac{\left(n+1\right)^2-n^2}{\left[n\left(n+1\right)\right]^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^1}\)

\(=1-\frac{1}{n^2+2n+1}\)

\(=\frac{n^2+2n}{n^2+2n+1}\)

Bình luận (0)
NA
19 tháng 10 2018 lúc 13:01

\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

\(=1-\frac{1}{\left(n-1\right)^2}\)

\(=\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\)

Bình luận (0)
NH
Xem chi tiết