UCLN(n;n+1) (n\(\in\)N)
m,n thuộc số tự nhiên ucln (m,n)=1 tìm ucln (m2+n2, m +n)
Cho A = m +n ; B= m.m +n.n. Biết UCLN(m,n)=1. Tìm UCLN(A,B)
Gọi ƯCLN(A; B) = d
=> A ; B chia hết cho d
=> m + n chia hết cho d và B = m2 + n2 chia hết cho d
m + n chia hết cho d => m(m+ n) chia hết cho d => m2 + mn chia hết cho d
=> (m2 + mn) - (m2 + n2) chia hết cho d => n(m - n) chia hết cho d
Nhận xét: n và m - n nguyên tố cùng nhau vì
Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n
Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1
Vậy n; m - n nguyên tố cùng nhau
Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d
+) Trường hợp: n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1
=> d = 1
+) Trường hợp: m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d
- Khi m lẻ => 2 chia hết cho d hoặc m chia hết cho d
Nếu 2 chia hết cho d mà d lớn nhất => d = 2
Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1
- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d
Quay lại trường hợp như trên => d = 2 hoặc 1
Vậy d = 1 hoặc d = 2
Cho A = m +n ; B= m.m +n.n. Biết UCLN(m,n)=1. Tìm UCLN(A,B)
Tìm UCLN của (3n+1; 5n+4) với n thuộc N biết UCLN của chúng khác 1
Cho A = m +n ; B= m.m +n.n. Biết UCLN(m,n)=1. Tìm UCLN(A,B)
Gọi ƯCLN(A; B) = d
=> A ; B chia hết cho d
=> m + n chia hết cho d và B = m2 + n2 chia hết cho d
m + n chia hết cho d => m(m+ n) chia hết cho d => m2 + mn chia hết cho d
=> (m2 + mn) - (m2 + n2) chia hết cho d => n(m - n) chia hết cho d
Nhận xét: n và m - n nguyên tố cùng nhau vì
Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n
Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1
Vậy n; m - n nguyên tố cùng nhau
Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d
+) Trường hợp: n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1
=> d = 1
+) Trường hợp: m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d
- Khi m lẻ => 2 chia hết cho d hoặc m chia hết cho d
Nếu 2 chia hết cho d mà d lớn nhất => d = 2
Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1
- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d
Quay lại trường hợp như trên => d = 2 hoặc 1
Vậy d = 1 hoặc d = 2
Gọi UCLN(A,B)=d
Ta có:\(\hept{\begin{cases}A⋮d\\B⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m+n⋮d\\m.m+n.n⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(m+n\right)\left(m-n\right)⋮d\\m.m+n.n⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m.m-n.n⋮d\\m.m+n.n⋮d\end{cases}}\)\(\Rightarrow\left(m.m-n.n\right)+\left(m.m+n.n\right)⋮d\)
\(\Rightarrow2.m.m⋮d\Rightarrow m.m⋮d\Rightarrow m⋮d\) vì UCLN(m,d)=1
\(\Rightarrow n⋮d\)
\(\Rightarrow d\inƯ\left(m,n\right)=1\)
Vậy UCLN((A,B)=1
Chứng minh rằng với mọi n thuộc N thì :
a, UCLN(n, 2n+1)=1
b, UCLN(3n+1, 4n+1)=1
ta lập biểu thưc vfhgjhkjggj
fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e
a.b.c.d.e.f.g=100
fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta
ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94
Cho A = m +n
B= m.m +n.n
Biết UCLN(m,n)=1
Tìm UCLN(A,B)
cho a;b thuộc N* :a>b UCLN(a:b) =1.CMR UCLN(a+b:a-b) bawng1 hoặc2
1.tim m ; n
7m=11n; (m;n)=45
2. cho UCLN(x;y)=1
tìm UCLN(x.y; x+y)
Cho n thuộc N , chứng minh rằng :
a) UCLN(2n+1,2n+3) = 1
b) UCLN(2n+5,3n+7) = 1
THANHS !
a)Gọi ƯCLN(2n+1,2n+3) = d (d thuộc N*)
=>2n+1 chia hết cho d và 2n+3 chia hết cho d
=>(2n+3)-(2n+1) chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư(2)
Ta có: Ư(2)={1;2}
Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2
=>d=1
Vậy ƯCLN(2n+1,2n+3) = 1 (đpcm)
b)Gọi ƯCLN(2n+5,3n+7) = d (d thuộc N*)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>6n+15 chia hết cho d và 6n+14 chia hết cho d
=>(6n+15)-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d thuộc Ư(1) =>d=1
Vậy ƯCLN(2n+5,3n+7) = 1 (đpcm)
a) Đặt: ƯCLN(2n+1,2n+3) = d
Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d
\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d
\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d
\(\Leftrightarrow\)2\(⋮\)d
Vì 2n+3 ko chia hết cho 2
Nên 1\(⋮\)d
\(\Leftrightarrow\)d=1
Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)
b) Đặt ƯCLN( 2n+5,3n+7 ) = d
Ta có: 2n+5 \(⋮\)d \(\Leftrightarrow\)3(2n+5) \(⋮\)d
\(\Leftrightarrow\)6n+15 \(⋮\)d
3n+7\(⋮\)d \(\Leftrightarrow\)2(3n+7) \(⋮\)d
\(\Leftrightarrow\)6n+14 \(⋮\)d
\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d
\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d
\(\Leftrightarrow\)1\(⋮\)d
\(\Leftrightarrow\)d = 1
Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)
Kb vs mk nha