Chứng tỏrằng 91002392 2 22 2A chia hết cho 3, cho 6.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) cho A =999993^1999 - 555557^4997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏrằng : 1/41+1/42+1/43+...+1/79+1/80>7/12
Chứng minh:1.a^2(a+1)+2a(a+1) chia hết cho 6 với a là số nguyên
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
1) a2(a+1)+2a(a+1)
=(a+1)(a2+2a)
=(a+1)(a2+2a+1-1)
=(a+1)[(a+1)2-12]
=(a+1)(a+1-1)(a+1+1)
=a(a+1)(a+2)
Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.
=> a(a+1)(a+2)\(⋮\)2.3=6
=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)
Chứng minh rằng mọi số tự nhiên a ; b
a) 2a + 6 chia hết cho 2
b) 9a + 27b chia hết cho 9
c) 2a + 4b + 1 không chia hết cho 2
d) 5a + 15b + 3 không chia hết cho 5
a; CM (2a + 6) ⋮ 2
Ta có: 2a + 6 = 2.(a + 3) ⋮ 2 \(\forall\) a(đpcm)
b; (9a + 27b) ⋮ 9
Ta có: 9a + 27b = 9(a + 3b) ⋮ 9 \(\forall\) a; b
c; CM : (2a + 4b + 1) không chia hết cho 2
Ta có: 2a +4b + 1 = 2(a + 2b) + 1
Vì 2.(a + 2b) ⋮ 2 mà 1 không chia hết cho 2 nên
(2a + 4b + 1) không chia hết cho 2 (đpcm)
d; CM : (5a + 15b + 3) không chia hết cho 5
Ta có: 5a + 15b + 3 = (5a+ 15b) + 3 = 5.(a + 3b) + 3
Vì 5.(a + 3b) ⋮ 5 mà 3 không chia hết cho 5 nên
(5a + 15b + 3) không chia hết cho 5 (đpcm)
Câu 6: Chứng tỏ A = 2 + 22 + 23 + 24….+ 259 + 260
a. Chia hết cho 3;
b. Chia hết cho 7.
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
1 ,chứng tỏ
D= (3n +3).(n+2) chia hết cho 6
E=(2a+3 +c)chia hết cho 7
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
Chứng minh rằng:
1) A=(3n-5)^2 - 25 chia hết cho 4
2) B=9 - (2n+3)^2 chia hết cho 4
3) C=a^3 - 3a^2 + 2a chia hết cho 6
Cho A 2 22 23 24 ....... 2100 .Chứng mih rằng A chia hết cho 3, cho 6
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{98}\right)\)chia hết cho \(6\).
CHỨNG MINH RẰNG :
1. 3^22 - 9^10 - 27^6 chia hết cho 71
2. A = 1 + 3 + 3^2 +3^3 + ................ + 3^35 chia hết cho 520
Bài 1 :
\(3^{22}-9^{10}-27^6=3^{22}-\left(3^2\right)^{10}-\left(3^3\right)^6=3^{22}-3^{20}-3^{18}=3^{18}.\left(3^4-3^2-1\right)=3^{18}.71\)chia hết cho 71 (đpcm).
Bài 1 : Chứng minh a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta có :
a, ( n + 10 ) ( n + 15 ) chia hết cho 2
b, n^3 + 5n chia hết cho 6
c, ( 3^100 + 19^990 ) chia hết cho 2
d, ( 3^1993 - 2^157 ) không chia hết cho 2
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
bài 2
a, ta có 2 TH:
+)n là số chẵn =>n+10 chia hết cho 2
+)n là số lẻ =>n+15 chia hết cho 2