Cho hình 51: Chứng minh ba điểm B, C, D thẳng hàng.
Cho hình 51 :
Chứng minh ba điểm B, C, D thẳng hàng
Gợi ý : Chứng minh \(\widehat{ADB}+\widehat{ADC}=180^0\)
Hướng dẫn:
Từ hình vẽ ta có:
DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)
=> ˆADK=ˆCDKADK^=CDK^
hay DK là phân giác ˆADCADC^
=> ˆADKADK^ = 1212ˆADCADC^
∆ADI = ∆BDI (c.c.c)
=> ˆADI=ˆBDIADI^=BDI^
=> DI là phân giác ˆADBADB^
=> ˆADIADI^ = 1212 ˆADBADB^
Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC
=> DK ⊥ DI
hay ˆADKADK^ + ˆADIADI^ = 900
Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900
=> ˆADCADC^ + ˆADBADB^ = 1800
Từ hình vẽ ta có:
DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)
=> ˆADK=ˆCDKADK^=CDK^
hay DK là phân giác ˆADCADC^
=> ˆADKADK^ = 1212ˆADCADC^
∆ADI = ∆BDI (c.c.c)
=> ˆADI=ˆBDIADI^=BDI^
=> DI là phân giác ˆADBADB^
=> ˆADIADI^ = 1212 ˆADBADB^
Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC
=> DK ⊥ DI
hay ˆADKADK^ + ˆADIADI^ = 900
Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900
=> ˆADCADC^ + ˆADBADB^ = 1800
Cho hình 88.
Chứng minh rằng BC // OO’ và ba điểm C, B, D thẳng hàng.
Xét tam giác ABC có:
OA = OB = OC = bán kính đường tròn (O)
Mà BO là trung tuyến của tam giác ABC
⇒ ∆ABC vuông tại B ⇒ AB ⊥ BC (1)
Lại có OO’ là đường trung trực của AB
⇒ AB ⊥ OO' (2)
Từ (1) và (2) ⇒ OO’ // BC
Chứng minh tương tự ta có ∆ABD vuông tại B ⇒ AB ⊥ BD (3)
Từ (1) và (3) ⇒ B, C, D thẳng hàng.
vẽ năm điểm : A , B , C , D , E sao cho ba điểm A , B , C thẳng hàng ba điêm B , C , D thẳng hàng , ba điểm C,D,E không thẳng hàng . Chứng minh bốn điểm A,B,C,D thẳng hàng
1.cho hình bình hành ABCD trên tia đối của AD lấy điểm E sao cho AE=AD .Gọi F là giao điểm của EC VÀ AB a) Chứng minh F là trung điểm của EC b) Chứng minh EBCA là hình binh hành c) Trên tia đối của CD lấy điểm T sao cho TC=CD.Chứng minh ba điểm T,B,E thẳng hàng d) Gọi giao của TA và EC là O. Chứng minh ba điểm D,O,B thẳng hàng
GIÚP MK VS, MK ĐANG CẦN GẤP Ạ
Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD
Chứng minh rằng ba điểm C, B, D ở hình dưới thẳng hàng.
Nối AB, BO, BC, BO', BD.
* Trong ∆ ABC, ta có: OA = OC = R (bán kính đường tròn (O))
Nên BO là đường trung tuyến của ∆ ABC.
Mà BO = R (bán kính (O)) ⇒ BO = OA= OC = 1/2 AC
Suy ra tam giác ABC vuông tại B ⇒ ∠ (ABC) = 90 0
* Trong ∆ ABD , ta có: AO' = O'D = R' (bán kính đường tròn (O'))
Nên BO' là đường trung tuyến của tam giác ABD.
Mà BO' = R' (bán kính (O')) ⇒ BO' = AO' = O'D = 1/2 AD
Suy ra tam giác ABD vuông tại B ⇒ ∠ (ABD) = 90 0
Ta có: ∠ (ABC) + ∠ (ABD) = ∠ (CBD) = 90 0 + 90 0 = 180 0
Vậy C, B, D thẳng hàng.
Cho 4 điểm A,B,C,D trong đó A,B,C,D thẳng hàng, ba điểm B,C,D thẳng hàng. Chứng minh A,B,C,D thẳng hàng
Vì đầu bài nói A,B,C,D thẳng hàng
Cho hình vẽ Chứng minh ba điểm B K C thẳng hàng
Cho hình dưới (hình 65a). Chứng minh rằng ba điểm B, K, C thẳng hàng
Nối KA, KB, KC (hình 65b).
Vì KD là đường trung trực của AB nên:
KA = KB (tính chất đường trung trực)
Suy ra: ΔKAB cân tại K
Do đó KD là đường phân giác của ∠(AKB)
Suy ra: ∠K1 = ∠K3 ⇒ ∠(AKB) = 2 ∠K1 (1)
Vì KE là đường trung trực của AC nên:
KA = KC (tính chất đường trung trực)
Do đó, tam giác AKC cân tại K. Suy ra KE là đường phân giác của ∠(AKC)
Suy ra: ∠K2 = ∠K4 ⇒ ∠(AKC) = 2 ∠K2 (2)
Ta có: KD ⊥ AB (gt) và AC ⊥ AB (gt)
Suy ra: KD // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song nhau)
Lại có: KE ⊥ AC (gt)
Suy ra: KE ⊥ KD (quan hệ giữa tính vuông góc và tính song song)
Hay: ∠(DKE) = 90o⇒ ∠K1 +∠K2 = 90o
Từ (1) và (2) suy ra: ∠(AKB) + ∠(AKC) = 2∠K1 + 2∠K2
= 2.( ∠K1 +∠K2 ) = 2.90o = 180o.
Vậy B, K, C thẳng hàng.
Cho hai hình vuông ABCD và DEFG, trong đó các bộ ba điểm A, D, G và D, C, E sắp xếp theo thứ tự thẳng hàng. Trên tia AD lấy điểm H sao cho AH=DG, trên tia CE lấy điểm K sao cho CK=DG.
a) Chứng minh bốn tam giác ABH, HGF, FEK, BCK bằng nhau.
b) Chứng minh BHFK là hình vuông.
c) Gọi J là tâm đối xứng của hình vuông BHFK. Chứng minh ba điểm A, C, J thẳng hàng.
d) Chứng minh ba đường thẳng AC, GE, HK đồng qui.