Trong không gian Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Chứng minh rằng (P) cắt (S) theo một đường tròn.
Trong không gian Oxyz, cho mặt cầu (S): ( x + 3 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 2 . Xác định tọa độ tâm của mặt cầu
A. I(-3;1;-1)
B. I(3;1;-1)
C. I(-3;-1;1)
D. I(3;-1;1)
Trong không gian Oxyz, cho mặt cầu (S): ( x + 2 ) 2 + ( y + 1 ) 2 + z 2 = 81 . Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S)
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(-1;2;1), R=9
B. I(1;-2;-1), R=9
C. I(1;-2;-1), R=3
D. I(-1;2;1), R=3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
A. ( P 1 ) : x + y - z + 2 = 0
B. ( P 2 ) : x + y - z - 2 = 0
C. ( P 3 ) : x + y - z + 10 = 0
D. ( P 4 ) : x + y - z - 10 = 0
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 2 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 12 . Mặt phẳng nào sau đây cắt mặt cầu (S) theo giao tuyến là một đường tròn?
Trong không gian Oxyz, cho mặt cầu (S): ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Điểm nào dưới đây thuộc (S)
A. M(1;-1;2)
B. N(-1;1;-2)
C. P(-3;-1;-1)
D. Q(3;1;1)
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-5)² + (y-1)² + (z+2)²=9. Tính bán kính R của mặt cầu (S).
A. R=18
B. R=9
C. R=3
D. R=6.
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
#2H3Y1-3~Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+(y+2)²+z²=25. Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(1;-2;0), R=5
B. I(-1;2;0), R=25
C. I(1;-2;0), R=25
D. I(-1;2;0), R=5.
Đáp án A
Mặt cầu (S): (x-a)²+(y-b)²+(z-c)²=R² có tâm là I(a;b;c) và bán kính là R.
Do đó, mặt cầu (S): (x-1)²+(y+2)²+z²=25 có tâm I(1;-2;0) và bán kính R=5.
Trong không gian Oxyz, cho mặt cầu S : ( x − 4 ) 2 + ( y + 5 ) 2 + ( z − 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu.
A. I − 4 ; 5 ; − 3 v à R = 2
B. I 4 ; − 5 ; 3 v à R = 2
C. I − 4 ; 5 ; − 3 v à R = 4
D. I 4 ; − 5 ; 3 v à R = 4