Tìm x,y,z biết:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
GIÚP MK VS NHA!
Tìm x, y, z biết:
\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
giúp mk nha ai làm đầy đủ mk cho 10 tick
Tìm x,y,z biết: \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Giúp mik vs ạ, mik đang cần gấp
Áp dụng tc của dãy tỉ số = nhau ta được :
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)
Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)
\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy ...
bạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))
TH1: \(x+y+z=0\)
Bài toán trở thành:
\(\frac{x}{-x+1}=\frac{y}{-y+1}=\frac{z}{-z-2}=0\)
\(\Leftrightarrow x=y=z=0\).
TH2: \(x+y+z\ne0\):
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}=x+y+z\).
Ta có hệ:
\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\2x=y+z+1\\2y=x+z+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
GIÚP KM CÂU NÀY VỚI CÁC BẠN ƠI:
Tìm số thực x,y,z biết:
\(\frac{x+y-3}{z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{1}{x+y+z}\)
GIÚP MK NHA. TICK
các bạn giúp mk câu này với :
Tìm x,y,z biết :
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Tìm x,y,z biết :
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
ai giải nhanh giùm mình vs nha thanks trước vì 9 rưỡi đi rùi !
8:50 gửi--> 9:30 đi
=> bạn phải nhắn tin may ra có kết quả mong đợi
Tìm x,y,z biết \(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)= X + Y + Z
Giải chi tiết rõ ràng cách tìm x,y,z ra nha các bạn
Ai nhanh mk tick cho !!!
Tìm x,y,z
\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=x+y+z\)
Giúp mik vs ạ, mik đang cần gấp!!Tks🥺
1.Cho các số thực x, y, z thỏa mãn:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
Tính \(P=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
* các bạn giúp mk nha * ( 2 bạn trả lời dưới này bị sai rùi )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)
Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.
Kết quả bằng 6 nha
k tui nha
Thanks
đáp số hai bạn này đúng mà bạn sai chỗ nào đâu
Cho 3 số \(x,y,z\ne0\)thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính P = \((1+\frac{y}{x})\times(1+\frac{y}{z})\times(1+\frac{z}{x})\)
Các bạn giúp mk với nha , ngày mai mk phải nộp bài này rồi , nhớ ghi rõ cách giải nha
THANKS!!!
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai