Giải các hệ phương trình sau bằng phương pháp thế: x - y = 3 3 x - 4 y = 2
Giải các hệ phương trình sau bằng phương pháp thế: x - 2 2 y = 5 x 2 + y = 1 - 10
Cách 1
Vậy hệ phương trình có nghiệm duy nhất
Cách 2
Giải các hệ phương trình sau bằng phương pháp thế:
a ) x − y = 3 3 x − 4 y = 2 b ) 7 x − 3 y = 5 4 x + y = 2 c ) x + 3 y = − 2 5 x − 4 y = 11
Cách 1
Từ (1) rút ra được y = x – 3
Thế vào phương trình (2) ta được:
3x – 4.(x – 3) = 2 ⇔ 3x – 4x + 12 = 2 ⇔ x = 10
Từ x = 10 ⇒ y = x – 3 = 7.
Vậy hệ phương trình có nghiệm duy nhất (10 ; 7).
Từ (2) rút ra được y = -4x + 2.
Thế y = -4x + 2 vào phương trình (1) ta được :
7x – 3.(-4x+2) = 5 ⇔ 7x + 12x – 6 = 5 ⇔ 19x = 11 ⇔ x= 11/19
Vậy hệ phương trình có nghiệm duy nhất ( 11/19;-6/19)
Từ (1) rút x theo y ta được: x = -3y – 2
Thế x = -3y – 2 vào phương trình (2) ta được :
5.(-3y – 2) – 4y = 11 ⇔ -15y – 10 – 4y = 11 ⇔ -19y = 21 ⇔ y = - 21/19
Vậy hệ phương trình có nghiệm duy nhất ( 25/19; -21/19)
Cách 2
Kiến thức áp dụng
Giải hệ phương trình ta làm như sau:
Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn)..
Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương ..
Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.
Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ)
4 x − 5 y = 3 3 x − y = 16
Ta có ( biểu diễn y theo x từ phương trình thứ hai):
Vậy hệ phương trình có nghiệm duy nhất (7;5)
Giải hệ phương trình sau bằng phương pháp thế (biểu diễn y theo x từ phương trình thứ hai của hệ) 4 x - 5 y = 3 3 x - y = 16
Ta có ( biểu diễn y theo x từ phương trình thứ hai):
Vậy hệ phương trình có nghiệm duy nhất (7;5)
Giải các hệ phương trình sau bằng phương pháp thế:
7 x - 3 y = 5 4 x + y = 2
7 x - 3 y = 5 1 4 x + y = 2 2
Từ (2) rút ra được y = -4x + 2.
Thế y = -4x + 2 vào phương trình (1) ta được :
7x – 3.(-4x+2) = 5 ⇔ 7x + 12x – 6 = 5 ⇔ 19x = 11 ⇔
Vậy hệ phương trình có nghiệm duy nhất
Giải các hệ phương trình sau bằng phương pháp thế: 3 x + 5 y = 1 2 x - y = - 8
Từ (2) ta rút ra được y = 2x + 8 (*)
Thế (*) vào phương trình (1) ta được :
3x + 5(2x + 8) = 1 ⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39 ⇔ x = -3.
Thay x = - 3 vào (*) ta được y = 2.(-3) + 8 = 2.
Vậy hệ phương trình có nghiệm duy nhất (-3 ; 2).
Giải các hệ phương trình sau bằng phương pháp thế: x y = 2 3 x + y - 10 = 0
Cách 1
Từ (1) ta rút ra được (*)
Thế (*) vào phương trình (2) ta được :
Thay y = 6 vào (*) ta được x = 4.
Vậy hệ phương trình có nghiệm duy nhất (x ; y) = (4 ; 6).
Cách 2
Giải các hệ phương trình sau bằng phương pháp thế: 7 x - 2 y = 1 3 x + y = 6
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (1; 3)
Giải các hệ phương trình sau bằng phương pháp thế: 3 x - y = 5 5 x + 2 y = 23
Cách 1
Từ (1) ta rút ra được y = 3x – 5 (*)
Thế (*) vào phương trình (2) ta được :
5x + 2(3x – 5) = 23 ⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔ x = 3.
Thay x = 3 vào (*) ta được y = 3.3 – 5 = 4.
Vậy hệ phương trình có nghiệm duy nhất (3 ; 4).