CMR: Với mọi n thuộc N, n >1 thì 3/ 9.14 + 3/ 14.19 + 3/ 19.24 +...+ 3/ (5n-1)(5n+4) < 1/15
CMR: Với mọi n thuộc N; n>1 thì: 3/9.14+3/14.19+3/19.24+...+3/(5n-1)(5n+4) < 1/15
Chứng minh rằng với mọi n thuộc N;n>hoặc =2 ta có :
3/9.14 + 3/14.19 + 3/19.24 +...+3/(5n-1).(5n+4) < 1/15
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
chứng minh rằng với mọi n thuộc N, n lớn hơn hoặc bằng 2, ta có 3/9.14 + 3/14.19 + 3/19.24 +.......+ 3/(5n-1)(5n+4) < 1/15
chứng minh rằng với mọi n thuộc N, n>= 2 thì
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)
Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )
chứng minh rằng với mọi n thuộc N và n>=2 thì
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n+1\right)\left(5n+4\right)}< \frac{1}{15}\)
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)
cmr với mọi n thuộc N, n > hoặc = 2 ta có
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}.\frac{5n-5}{45n+36}=\frac{n-1}{45n+36}\)
chứng minh rằng với mọi n thuộc N, n lớn hơn hoặc bằng 2, ta có
3/9.14 + 3/14.19 + 3/19.24 +.......+ 3/(5n-1)(5n+4) < 1/15
Chứng minh rằng với mọi n thuộc N; n nhỏ hơn hoặc bằng 2 ta có:
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n-1\right).\left(5n+4\right)}<\frac{1}{15}\)
Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(5A=\frac{1}{3}-\frac{1}{5n+4}\)
=> \(5A<\frac{1}{3}\)
=> \(A<\frac{1}{3}:5\)
hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)
Nhớ nhé bạn
Chứng minh rằng với mọi n thuộc N ; n nhỏ hơn hoặc bằng 2 ta có:
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+......+\frac{3}{\left(5n-1\right).\left(5n+4\right)}<\frac{1}{15}\)